{"title":"特征值问题并行轨道更新方法的数值分析","authors":"Xiaoying Dai, Yan Li, Bin Yang, Aihui Zhou","doi":"10.1137/24m1690084","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 4, Page 1886-1908, August 2025. <br/> Abstract. The parallel orbital-updating approach is an orbital/eigenfunction iteration based approach for solving eigenvalue problems when many eigenpairs are required. It has been proven to be efficient, for instance, in electronic structure calculations. In this paper, based on the investigation of a quasi-orthogonality, we present the numerical analysis of the parallel orbital-updating approach for linear eigenvalue problems, including convergence and error estimates of the numerical approximations.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"15 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Analysis of the Parallel Orbital-Updating Approach for Eigenvalue Problems\",\"authors\":\"Xiaoying Dai, Yan Li, Bin Yang, Aihui Zhou\",\"doi\":\"10.1137/24m1690084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 63, Issue 4, Page 1886-1908, August 2025. <br/> Abstract. The parallel orbital-updating approach is an orbital/eigenfunction iteration based approach for solving eigenvalue problems when many eigenpairs are required. It has been proven to be efficient, for instance, in electronic structure calculations. In this paper, based on the investigation of a quasi-orthogonality, we present the numerical analysis of the parallel orbital-updating approach for linear eigenvalue problems, including convergence and error estimates of the numerical approximations.\",\"PeriodicalId\":49527,\"journal\":{\"name\":\"SIAM Journal on Numerical Analysis\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/24m1690084\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/24m1690084","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Numerical Analysis of the Parallel Orbital-Updating Approach for Eigenvalue Problems
SIAM Journal on Numerical Analysis, Volume 63, Issue 4, Page 1886-1908, August 2025. Abstract. The parallel orbital-updating approach is an orbital/eigenfunction iteration based approach for solving eigenvalue problems when many eigenpairs are required. It has been proven to be efficient, for instance, in electronic structure calculations. In this paper, based on the investigation of a quasi-orthogonality, we present the numerical analysis of the parallel orbital-updating approach for linear eigenvalue problems, including convergence and error estimates of the numerical approximations.
期刊介绍:
SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.