AF9628钢高速断片及片状断裂

IF 12.8 1区 材料科学 Q1 ENGINEERING, MECHANICAL
T. Virazels, J. García-Molleja, J.C. Nieto-Fuentes, M. Gonzales, F. Sket, J.A. Rodríguez-Martínez
{"title":"AF9628钢高速断片及片状断裂","authors":"T. Virazels, J. García-Molleja, J.C. Nieto-Fuentes, M. Gonzales, F. Sket, J.A. Rodríguez-Martínez","doi":"10.1016/j.ijplas.2025.104454","DOIUrl":null,"url":null,"abstract":"This paper investigates the mechanics of high-velocity fragmentation and spall fracture of steel AF9628. For this purpose, we have conducted an experimental campaign comprising 25 ring expansion tests and 36 planar plate impact experiments utilizing a single-stage light-gas gun, resulting in the largest and most comprehensive investigation to date on the dynamic fracture properties of AF9628. The ring expansion tests involve the axial impact of a conical-nosed cylindrical projectile on a stationary thin-walled tube, over which the specimen is inserted. The cross-section of the cylindrical part of the projectile exceeds the inner diameter of the tube, prompting expansion of the sample as the projectile advances, ultimately leading to the formation of multiple necks and fractures across the circumference of the ring. The experiments were documented using two high-speed cameras to capture time-resolved insights into the specimen’s deformation and fracture mechanisms. The video footage was synchronized with a photonic Doppler velocimetry system to measure the time evolution of the radial speed of the ring, thereby establishing a correlation between the nucleation of necks, the formation of fragments, and the actual strain rate in the specimens, which ranged from <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;&amp;#x2248;&lt;/mo&gt;&lt;mn is=\"true\"&gt;8000&lt;/mn&gt;&lt;mspace width=\"0.33em\" is=\"true\" /&gt;&lt;msup is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mtext is=\"true\"&gt;s&lt;/mtext&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;&amp;#x2212;&lt;/mo&gt;&lt;mn is=\"true\"&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.317ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -896.2 4787.2 997.6\" width=\"11.119ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-2248\"></use></g><g is=\"true\" transform=\"translate(1056,0)\"><use xlink:href=\"#MJMAIN-38\"></use><use x=\"500\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use><use x=\"1001\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use><use x=\"1501\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use></g><g is=\"true\"></g><g is=\"true\" transform=\"translate(3388,0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-73\"></use></g></g><g is=\"true\" transform=\"translate(394,362)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2212\"></use></g><g is=\"true\" transform=\"translate(550,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-31\"></use></g></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mo is=\"true\">≈</mo><mn is=\"true\">8000</mn><mspace is=\"true\" width=\"0.33em\"></mspace><msup is=\"true\"><mrow is=\"true\"><mtext is=\"true\">s</mtext></mrow><mrow is=\"true\"><mo is=\"true\">−</mo><mn is=\"true\">1</mn></mrow></msup></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mo is=\"true\">≈</mo><mn is=\"true\">8000</mn><mspace width=\"0.33em\" is=\"true\"></mspace><msup is=\"true\"><mrow is=\"true\"><mtext is=\"true\">s</mtext></mrow><mrow is=\"true\"><mo is=\"true\">−</mo><mn is=\"true\">1</mn></mrow></msup></mrow></math></script></span> to <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;&amp;#x2248;&lt;/mo&gt;&lt;mn is=\"true\"&gt;15000&lt;/mn&gt;&lt;mspace width=\"0.33em\" is=\"true\" /&gt;&lt;msup is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mtext is=\"true\"&gt;s&lt;/mtext&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;&amp;#x2212;&lt;/mo&gt;&lt;mn is=\"true\"&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.317ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -896.2 5287.7 997.6\" width=\"12.281ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-2248\"></use></g><g is=\"true\" transform=\"translate(1056,0)\"><use xlink:href=\"#MJMAIN-31\"></use><use x=\"500\" xlink:href=\"#MJMAIN-35\" y=\"0\"></use><use x=\"1001\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use><use x=\"1501\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use><use x=\"2002\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use></g><g is=\"true\"></g><g is=\"true\" transform=\"translate(3888,0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-73\"></use></g></g><g is=\"true\" transform=\"translate(394,362)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2212\"></use></g><g is=\"true\" transform=\"translate(550,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-31\"></use></g></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mo is=\"true\">≈</mo><mn is=\"true\">15000</mn><mspace is=\"true\" width=\"0.33em\"></mspace><msup is=\"true\"><mrow is=\"true\"><mtext is=\"true\">s</mtext></mrow><mrow is=\"true\"><mo is=\"true\">−</mo><mn is=\"true\">1</mn></mrow></msup></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mo is=\"true\">≈</mo><mn is=\"true\">15000</mn><mspace width=\"0.33em\" is=\"true\"></mspace><msup is=\"true\"><mrow is=\"true\"><mtext is=\"true\">s</mtext></mrow><mrow is=\"true\"><mo is=\"true\">−</mo><mn is=\"true\">1</mn></mrow></msup></mrow></math></script></span> for the range of impact velocities investigated, spanning from <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;&amp;#x2248;&lt;/mo&gt;&lt;mn is=\"true\"&gt;240&lt;/mn&gt;&lt;mspace width=\"0.33em\" is=\"true\" /&gt;&lt;mtext is=\"true\"&gt;m/s&lt;/mtext&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.779ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -846.5 4616.3 1196.3\" width=\"10.722ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-2248\"></use></g><g is=\"true\" transform=\"translate(1056,0)\"><use xlink:href=\"#MJMAIN-32\"></use><use x=\"500\" xlink:href=\"#MJMAIN-34\" y=\"0\"></use><use x=\"1001\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use></g><g is=\"true\"></g><g is=\"true\" transform=\"translate(2887,0)\"><use xlink:href=\"#MJMAIN-6D\"></use><use x=\"833\" xlink:href=\"#MJMAIN-2F\" y=\"0\"></use><use x=\"1334\" xlink:href=\"#MJMAIN-73\" y=\"0\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mo is=\"true\">≈</mo><mn is=\"true\">240</mn><mspace is=\"true\" width=\"0.33em\"></mspace><mtext is=\"true\">m/s</mtext></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mo is=\"true\">≈</mo><mn is=\"true\">240</mn><mspace width=\"0.33em\" is=\"true\"></mspace><mtext is=\"true\">m/s</mtext></mrow></math></script></span> to <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;&amp;#x2248;&lt;/mo&gt;&lt;mn is=\"true\"&gt;370&lt;/mn&gt;&lt;mspace width=\"0.33em\" is=\"true\" /&gt;&lt;mtext is=\"true\"&gt;m/s&lt;/mtext&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.779ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -846.5 4616.3 1196.3\" width=\"10.722ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-2248\"></use></g><g is=\"true\" transform=\"translate(1056,0)\"><use xlink:href=\"#MJMAIN-33\"></use><use x=\"500\" xlink:href=\"#MJMAIN-37\" y=\"0\"></use><use x=\"1001\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use></g><g is=\"true\"></g><g is=\"true\" transform=\"translate(2887,0)\"><use xlink:href=\"#MJMAIN-6D\"></use><use x=\"833\" xlink:href=\"#MJMAIN-2F\" y=\"0\"></use><use x=\"1334\" xlink:href=\"#MJMAIN-73\" y=\"0\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mo is=\"true\">≈</mo><mn is=\"true\">370</mn><mspace is=\"true\" width=\"0.33em\"></mspace><mtext is=\"true\">m/s</mtext></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mo is=\"true\">≈</mo><mn is=\"true\">370</mn><mspace width=\"0.33em\" is=\"true\"></mspace><mtext is=\"true\">m/s</mtext></mrow></math></script></span>. The fragments were soft-recovered, weighed, sized, and the fracture surfaces were analyzed utilizing scanning electron microscopy and X-ray tomography. The experimental results demonstrate a general increase in both the number of necks and fragments with expansion velocity. The fractographic investigation and the 3D reconstruction of the fracture surfaces showed a mix of equiaxed dimples indicative of tensile failure and elliptical dimples suggestive of shear failure, with the predominance of each type varying across fractures. The planar plate impact experiments consists of propelling a disc-like projectile towards a stationary disc-like target at velocities ranging from <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;&amp;#x2248;&lt;/mo&gt;&lt;mn is=\"true\"&gt;380&lt;/mn&gt;&lt;mspace width=\"0.33em\" is=\"true\" /&gt;&lt;mtext is=\"true\"&gt;m/s&lt;/mtext&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.779ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -846.5 4616.3 1196.3\" width=\"10.722ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-2248\"></use></g><g is=\"true\" transform=\"translate(1056,0)\"><use xlink:href=\"#MJMAIN-33\"></use><use x=\"500\" xlink:href=\"#MJMAIN-38\" y=\"0\"></use><use x=\"1001\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use></g><g is=\"true\"></g><g is=\"true\" transform=\"translate(2887,0)\"><use xlink:href=\"#MJMAIN-6D\"></use><use x=\"833\" xlink:href=\"#MJMAIN-2F\" y=\"0\"></use><use x=\"1334\" xlink:href=\"#MJMAIN-73\" y=\"0\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mo is=\"true\">≈</mo><mn is=\"true\">380</mn><mspace is=\"true\" width=\"0.33em\"></mspace><mtext is=\"true\">m/s</mtext></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mo is=\"true\">≈</mo><mn is=\"true\">380</mn><mspace width=\"0.33em\" is=\"true\"></mspace><mtext is=\"true\">m/s</mtext></mrow></math></script></span> to <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;&amp;#x2248;&lt;/mo&gt;&lt;mn is=\"true\"&gt;780&lt;/mn&gt;&lt;mspace width=\"0.33em\" is=\"true\" /&gt;&lt;mtext is=\"true\"&gt;m/s&lt;/mtext&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.779ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -846.5 4616.3 1196.3\" width=\"10.722ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-2248\"></use></g><g is=\"true\" transform=\"translate(1056,0)\"><use xlink:href=\"#MJMAIN-37\"></use><use x=\"500\" xlink:href=\"#MJMAIN-38\" y=\"0\"></use><use x=\"1001\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use></g><g is=\"true\"></g><g is=\"true\" transform=\"translate(2887,0)\"><use xlink:href=\"#MJMAIN-6D\"></use><use x=\"833\" xlink:href=\"#MJMAIN-2F\" y=\"0\"></use><use x=\"1334\" xlink:href=\"#MJMAIN-73\" y=\"0\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mo is=\"true\">≈</mo><mn is=\"true\">780</mn><mspace is=\"true\" width=\"0.33em\"></mspace><mtext is=\"true\">m/s</mtext></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mo is=\"true\">≈</mo><mn is=\"true\">780</mn><mspace width=\"0.33em\" is=\"true\"></mspace><mtext is=\"true\">m/s</mtext></mrow></math></script></span>. The target is twice the thickness of the projectile, positioning the spall plane approximately at the center of the target. A photonic Doppler velocimetry system was utilized to measure the axial velocity of the free surface of the target, providing data on shock pressure, shock velocity, shock width, Hugoniot elastic limit, spall strength, and strain rate within the spall plane, which varied from <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;&amp;#x2248;&lt;/mo&gt;&lt;mn is=\"true\"&gt;50000&lt;/mn&gt;&lt;mspace width=\"0.33em\" is=\"true\" /&gt;&lt;msup is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mtext is=\"true\"&gt;s&lt;/mtext&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;&amp;#x2212;&lt;/mo&gt;&lt;mn is=\"true\"&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.317ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -896.2 5287.7 997.6\" width=\"12.281ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-2248\"></use></g><g is=\"true\" transform=\"translate(1056,0)\"><use xlink:href=\"#MJMAIN-35\"></use><use x=\"500\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use><use x=\"1001\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use><use x=\"1501\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use><use x=\"2002\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use></g><g is=\"true\"></g><g is=\"true\" transform=\"translate(3888,0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-73\"></use></g></g><g is=\"true\" transform=\"translate(394,362)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2212\"></use></g><g is=\"true\" transform=\"translate(550,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-31\"></use></g></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mo is=\"true\">≈</mo><mn is=\"true\">50000</mn><mspace is=\"true\" width=\"0.33em\"></mspace><msup is=\"true\"><mrow is=\"true\"><mtext is=\"true\">s</mtext></mrow><mrow is=\"true\"><mo is=\"true\">−</mo><mn is=\"true\">1</mn></mrow></msup></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mo is=\"true\">≈</mo><mn is=\"true\">50000</mn><mspace width=\"0.33em\" is=\"true\"></mspace><msup is=\"true\"><mrow is=\"true\"><mtext is=\"true\">s</mtext></mrow><mrow is=\"true\"><mo is=\"true\">−</mo><mn is=\"true\">1</mn></mrow></msup></mrow></math></script></span> to <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;&amp;#x2248;&lt;/mo&gt;&lt;mn is=\"true\"&gt;170000&lt;/mn&gt;&lt;mspace width=\"0.33em\" is=\"true\" /&gt;&lt;msup is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mtext is=\"true\"&gt;s&lt;/mtext&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;&amp;#x2212;&lt;/mo&gt;&lt;mn is=\"true\"&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.317ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -896.2 5788.2 997.6\" width=\"13.444ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-2248\"></use></g><g is=\"true\" transform=\"translate(1056,0)\"><use xlink:href=\"#MJMAIN-31\"></use><use x=\"500\" xlink:href=\"#MJMAIN-37\" y=\"0\"></use><use x=\"1001\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use><use x=\"1501\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use><use x=\"2002\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use><use x=\"2502\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use></g><g is=\"true\"></g><g is=\"true\" transform=\"translate(4389,0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-73\"></use></g></g><g is=\"true\" transform=\"translate(394,362)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2212\"></use></g><g is=\"true\" transform=\"translate(550,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-31\"></use></g></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mo is=\"true\">≈</mo><mn is=\"true\">170000</mn><mspace is=\"true\" width=\"0.33em\"></mspace><msup is=\"true\"><mrow is=\"true\"><mtext is=\"true\">s</mtext></mrow><mrow is=\"true\"><mo is=\"true\">−</mo><mn is=\"true\">1</mn></mrow></msup></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mo is=\"true\">≈</mo><mn is=\"true\">170000</mn><mspace width=\"0.33em\" is=\"true\"></mspace><msup is=\"true\"><mrow is=\"true\"><mtext is=\"true\">s</mtext></mrow><mrow is=\"true\"><mo is=\"true\">−</mo><mn is=\"true\">1</mn></mrow></msup></mrow></math></script></span> across the tested impact velocity range. The target specimens have been soft-recovered, sized, and analyzed using scanning electron microscopy and X-ray tomography. The investigated impact velocities range from the onset of incipient spalling, characterized by discontinuous cracking and limited void growth, to the formation of a complete fracture spanning a large portion of the central section of the specimen, resulting from extensive cracking and the coalescence of numerous large voids. The X-ray tomography analysis provided three-dimensional reconstructions of the spallation, yielding quantitative data on the evolution of fracture size and volume with impact velocity. The scanning electron microscopy investigation revealed the mechanisms of void growth, coalescence, and intervoid cracking leading to spallation, without revealing a clear influence of the material microstructure on the crack propagation path.","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"51 1","pages":""},"PeriodicalIF":12.8000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-velocity fragmentation and spall fracture of steel AF9628\",\"authors\":\"T. Virazels, J. García-Molleja, J.C. Nieto-Fuentes, M. Gonzales, F. Sket, J.A. Rodríguez-Martínez\",\"doi\":\"10.1016/j.ijplas.2025.104454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the mechanics of high-velocity fragmentation and spall fracture of steel AF9628. For this purpose, we have conducted an experimental campaign comprising 25 ring expansion tests and 36 planar plate impact experiments utilizing a single-stage light-gas gun, resulting in the largest and most comprehensive investigation to date on the dynamic fracture properties of AF9628. The ring expansion tests involve the axial impact of a conical-nosed cylindrical projectile on a stationary thin-walled tube, over which the specimen is inserted. The cross-section of the cylindrical part of the projectile exceeds the inner diameter of the tube, prompting expansion of the sample as the projectile advances, ultimately leading to the formation of multiple necks and fractures across the circumference of the ring. The experiments were documented using two high-speed cameras to capture time-resolved insights into the specimen’s deformation and fracture mechanisms. The video footage was synchronized with a photonic Doppler velocimetry system to measure the time evolution of the radial speed of the ring, thereby establishing a correlation between the nucleation of necks, the formation of fragments, and the actual strain rate in the specimens, which ranged from <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mo is=\\\"true\\\"&gt;&amp;#x2248;&lt;/mo&gt;&lt;mn is=\\\"true\\\"&gt;8000&lt;/mn&gt;&lt;mspace width=\\\"0.33em\\\" is=\\\"true\\\" /&gt;&lt;msup is=\\\"true\\\"&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mtext is=\\\"true\\\"&gt;s&lt;/mtext&gt;&lt;/mrow&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mo is=\\\"true\\\"&gt;&amp;#x2212;&lt;/mo&gt;&lt;mn is=\\\"true\\\"&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.317ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.235ex;\\\" viewbox=\\\"0 -896.2 4787.2 997.6\\\" width=\\\"11.119ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-2248\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(1056,0)\\\"><use xlink:href=\\\"#MJMAIN-38\\\"></use><use x=\\\"500\\\" xlink:href=\\\"#MJMAIN-30\\\" y=\\\"0\\\"></use><use x=\\\"1001\\\" xlink:href=\\\"#MJMAIN-30\\\" y=\\\"0\\\"></use><use x=\\\"1501\\\" xlink:href=\\\"#MJMAIN-30\\\" y=\\\"0\\\"></use></g><g is=\\\"true\\\"></g><g is=\\\"true\\\" transform=\\\"translate(3388,0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-73\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(394,362)\\\"><g is=\\\"true\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-2212\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(550,0)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-31\\\"></use></g></g></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><mo is=\\\"true\\\">≈</mo><mn is=\\\"true\\\">8000</mn><mspace is=\\\"true\\\" width=\\\"0.33em\\\"></mspace><msup is=\\\"true\\\"><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">s</mtext></mrow><mrow is=\\\"true\\\"><mo is=\\\"true\\\">−</mo><mn is=\\\"true\\\">1</mn></mrow></msup></mrow></math></span></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mo is=\\\"true\\\">≈</mo><mn is=\\\"true\\\">8000</mn><mspace width=\\\"0.33em\\\" is=\\\"true\\\"></mspace><msup is=\\\"true\\\"><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">s</mtext></mrow><mrow is=\\\"true\\\"><mo is=\\\"true\\\">−</mo><mn is=\\\"true\\\">1</mn></mrow></msup></mrow></math></script></span> to <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mo is=\\\"true\\\"&gt;&amp;#x2248;&lt;/mo&gt;&lt;mn is=\\\"true\\\"&gt;15000&lt;/mn&gt;&lt;mspace width=\\\"0.33em\\\" is=\\\"true\\\" /&gt;&lt;msup is=\\\"true\\\"&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mtext is=\\\"true\\\"&gt;s&lt;/mtext&gt;&lt;/mrow&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mo is=\\\"true\\\"&gt;&amp;#x2212;&lt;/mo&gt;&lt;mn is=\\\"true\\\"&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.317ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.235ex;\\\" viewbox=\\\"0 -896.2 5287.7 997.6\\\" width=\\\"12.281ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-2248\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(1056,0)\\\"><use xlink:href=\\\"#MJMAIN-31\\\"></use><use x=\\\"500\\\" xlink:href=\\\"#MJMAIN-35\\\" y=\\\"0\\\"></use><use x=\\\"1001\\\" xlink:href=\\\"#MJMAIN-30\\\" y=\\\"0\\\"></use><use x=\\\"1501\\\" xlink:href=\\\"#MJMAIN-30\\\" y=\\\"0\\\"></use><use x=\\\"2002\\\" xlink:href=\\\"#MJMAIN-30\\\" y=\\\"0\\\"></use></g><g is=\\\"true\\\"></g><g is=\\\"true\\\" transform=\\\"translate(3888,0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-73\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(394,362)\\\"><g is=\\\"true\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-2212\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(550,0)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-31\\\"></use></g></g></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><mo is=\\\"true\\\">≈</mo><mn is=\\\"true\\\">15000</mn><mspace is=\\\"true\\\" width=\\\"0.33em\\\"></mspace><msup is=\\\"true\\\"><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">s</mtext></mrow><mrow is=\\\"true\\\"><mo is=\\\"true\\\">−</mo><mn is=\\\"true\\\">1</mn></mrow></msup></mrow></math></span></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mo is=\\\"true\\\">≈</mo><mn is=\\\"true\\\">15000</mn><mspace width=\\\"0.33em\\\" is=\\\"true\\\"></mspace><msup is=\\\"true\\\"><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">s</mtext></mrow><mrow is=\\\"true\\\"><mo is=\\\"true\\\">−</mo><mn is=\\\"true\\\">1</mn></mrow></msup></mrow></math></script></span> for the range of impact velocities investigated, spanning from <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mo is=\\\"true\\\"&gt;&amp;#x2248;&lt;/mo&gt;&lt;mn is=\\\"true\\\"&gt;240&lt;/mn&gt;&lt;mspace width=\\\"0.33em\\\" is=\\\"true\\\" /&gt;&lt;mtext is=\\\"true\\\"&gt;m/s&lt;/mtext&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.779ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.812ex;\\\" viewbox=\\\"0 -846.5 4616.3 1196.3\\\" width=\\\"10.722ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-2248\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(1056,0)\\\"><use xlink:href=\\\"#MJMAIN-32\\\"></use><use x=\\\"500\\\" xlink:href=\\\"#MJMAIN-34\\\" y=\\\"0\\\"></use><use x=\\\"1001\\\" xlink:href=\\\"#MJMAIN-30\\\" y=\\\"0\\\"></use></g><g is=\\\"true\\\"></g><g is=\\\"true\\\" transform=\\\"translate(2887,0)\\\"><use xlink:href=\\\"#MJMAIN-6D\\\"></use><use x=\\\"833\\\" xlink:href=\\\"#MJMAIN-2F\\\" y=\\\"0\\\"></use><use x=\\\"1334\\\" xlink:href=\\\"#MJMAIN-73\\\" y=\\\"0\\\"></use></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><mo is=\\\"true\\\">≈</mo><mn is=\\\"true\\\">240</mn><mspace is=\\\"true\\\" width=\\\"0.33em\\\"></mspace><mtext is=\\\"true\\\">m/s</mtext></mrow></math></span></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mo is=\\\"true\\\">≈</mo><mn is=\\\"true\\\">240</mn><mspace width=\\\"0.33em\\\" is=\\\"true\\\"></mspace><mtext is=\\\"true\\\">m/s</mtext></mrow></math></script></span> to <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mo is=\\\"true\\\"&gt;&amp;#x2248;&lt;/mo&gt;&lt;mn is=\\\"true\\\"&gt;370&lt;/mn&gt;&lt;mspace width=\\\"0.33em\\\" is=\\\"true\\\" /&gt;&lt;mtext is=\\\"true\\\"&gt;m/s&lt;/mtext&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.779ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.812ex;\\\" viewbox=\\\"0 -846.5 4616.3 1196.3\\\" width=\\\"10.722ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-2248\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(1056,0)\\\"><use xlink:href=\\\"#MJMAIN-33\\\"></use><use x=\\\"500\\\" xlink:href=\\\"#MJMAIN-37\\\" y=\\\"0\\\"></use><use x=\\\"1001\\\" xlink:href=\\\"#MJMAIN-30\\\" y=\\\"0\\\"></use></g><g is=\\\"true\\\"></g><g is=\\\"true\\\" transform=\\\"translate(2887,0)\\\"><use xlink:href=\\\"#MJMAIN-6D\\\"></use><use x=\\\"833\\\" xlink:href=\\\"#MJMAIN-2F\\\" y=\\\"0\\\"></use><use x=\\\"1334\\\" xlink:href=\\\"#MJMAIN-73\\\" y=\\\"0\\\"></use></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><mo is=\\\"true\\\">≈</mo><mn is=\\\"true\\\">370</mn><mspace is=\\\"true\\\" width=\\\"0.33em\\\"></mspace><mtext is=\\\"true\\\">m/s</mtext></mrow></math></span></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mo is=\\\"true\\\">≈</mo><mn is=\\\"true\\\">370</mn><mspace width=\\\"0.33em\\\" is=\\\"true\\\"></mspace><mtext is=\\\"true\\\">m/s</mtext></mrow></math></script></span>. The fragments were soft-recovered, weighed, sized, and the fracture surfaces were analyzed utilizing scanning electron microscopy and X-ray tomography. The experimental results demonstrate a general increase in both the number of necks and fragments with expansion velocity. The fractographic investigation and the 3D reconstruction of the fracture surfaces showed a mix of equiaxed dimples indicative of tensile failure and elliptical dimples suggestive of shear failure, with the predominance of each type varying across fractures. The planar plate impact experiments consists of propelling a disc-like projectile towards a stationary disc-like target at velocities ranging from <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mo is=\\\"true\\\"&gt;&amp;#x2248;&lt;/mo&gt;&lt;mn is=\\\"true\\\"&gt;380&lt;/mn&gt;&lt;mspace width=\\\"0.33em\\\" is=\\\"true\\\" /&gt;&lt;mtext is=\\\"true\\\"&gt;m/s&lt;/mtext&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.779ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.812ex;\\\" viewbox=\\\"0 -846.5 4616.3 1196.3\\\" width=\\\"10.722ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-2248\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(1056,0)\\\"><use xlink:href=\\\"#MJMAIN-33\\\"></use><use x=\\\"500\\\" xlink:href=\\\"#MJMAIN-38\\\" y=\\\"0\\\"></use><use x=\\\"1001\\\" xlink:href=\\\"#MJMAIN-30\\\" y=\\\"0\\\"></use></g><g is=\\\"true\\\"></g><g is=\\\"true\\\" transform=\\\"translate(2887,0)\\\"><use xlink:href=\\\"#MJMAIN-6D\\\"></use><use x=\\\"833\\\" xlink:href=\\\"#MJMAIN-2F\\\" y=\\\"0\\\"></use><use x=\\\"1334\\\" xlink:href=\\\"#MJMAIN-73\\\" y=\\\"0\\\"></use></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><mo is=\\\"true\\\">≈</mo><mn is=\\\"true\\\">380</mn><mspace is=\\\"true\\\" width=\\\"0.33em\\\"></mspace><mtext is=\\\"true\\\">m/s</mtext></mrow></math></span></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mo is=\\\"true\\\">≈</mo><mn is=\\\"true\\\">380</mn><mspace width=\\\"0.33em\\\" is=\\\"true\\\"></mspace><mtext is=\\\"true\\\">m/s</mtext></mrow></math></script></span> to <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mo is=\\\"true\\\"&gt;&amp;#x2248;&lt;/mo&gt;&lt;mn is=\\\"true\\\"&gt;780&lt;/mn&gt;&lt;mspace width=\\\"0.33em\\\" is=\\\"true\\\" /&gt;&lt;mtext is=\\\"true\\\"&gt;m/s&lt;/mtext&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.779ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.812ex;\\\" viewbox=\\\"0 -846.5 4616.3 1196.3\\\" width=\\\"10.722ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-2248\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(1056,0)\\\"><use xlink:href=\\\"#MJMAIN-37\\\"></use><use x=\\\"500\\\" xlink:href=\\\"#MJMAIN-38\\\" y=\\\"0\\\"></use><use x=\\\"1001\\\" xlink:href=\\\"#MJMAIN-30\\\" y=\\\"0\\\"></use></g><g is=\\\"true\\\"></g><g is=\\\"true\\\" transform=\\\"translate(2887,0)\\\"><use xlink:href=\\\"#MJMAIN-6D\\\"></use><use x=\\\"833\\\" xlink:href=\\\"#MJMAIN-2F\\\" y=\\\"0\\\"></use><use x=\\\"1334\\\" xlink:href=\\\"#MJMAIN-73\\\" y=\\\"0\\\"></use></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><mo is=\\\"true\\\">≈</mo><mn is=\\\"true\\\">780</mn><mspace is=\\\"true\\\" width=\\\"0.33em\\\"></mspace><mtext is=\\\"true\\\">m/s</mtext></mrow></math></span></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mo is=\\\"true\\\">≈</mo><mn is=\\\"true\\\">780</mn><mspace width=\\\"0.33em\\\" is=\\\"true\\\"></mspace><mtext is=\\\"true\\\">m/s</mtext></mrow></math></script></span>. The target is twice the thickness of the projectile, positioning the spall plane approximately at the center of the target. A photonic Doppler velocimetry system was utilized to measure the axial velocity of the free surface of the target, providing data on shock pressure, shock velocity, shock width, Hugoniot elastic limit, spall strength, and strain rate within the spall plane, which varied from <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mo is=\\\"true\\\"&gt;&amp;#x2248;&lt;/mo&gt;&lt;mn is=\\\"true\\\"&gt;50000&lt;/mn&gt;&lt;mspace width=\\\"0.33em\\\" is=\\\"true\\\" /&gt;&lt;msup is=\\\"true\\\"&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mtext is=\\\"true\\\"&gt;s&lt;/mtext&gt;&lt;/mrow&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mo is=\\\"true\\\"&gt;&amp;#x2212;&lt;/mo&gt;&lt;mn is=\\\"true\\\"&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.317ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.235ex;\\\" viewbox=\\\"0 -896.2 5287.7 997.6\\\" width=\\\"12.281ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-2248\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(1056,0)\\\"><use xlink:href=\\\"#MJMAIN-35\\\"></use><use x=\\\"500\\\" xlink:href=\\\"#MJMAIN-30\\\" y=\\\"0\\\"></use><use x=\\\"1001\\\" xlink:href=\\\"#MJMAIN-30\\\" y=\\\"0\\\"></use><use x=\\\"1501\\\" xlink:href=\\\"#MJMAIN-30\\\" y=\\\"0\\\"></use><use x=\\\"2002\\\" xlink:href=\\\"#MJMAIN-30\\\" y=\\\"0\\\"></use></g><g is=\\\"true\\\"></g><g is=\\\"true\\\" transform=\\\"translate(3888,0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-73\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(394,362)\\\"><g is=\\\"true\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-2212\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(550,0)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-31\\\"></use></g></g></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><mo is=\\\"true\\\">≈</mo><mn is=\\\"true\\\">50000</mn><mspace is=\\\"true\\\" width=\\\"0.33em\\\"></mspace><msup is=\\\"true\\\"><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">s</mtext></mrow><mrow is=\\\"true\\\"><mo is=\\\"true\\\">−</mo><mn is=\\\"true\\\">1</mn></mrow></msup></mrow></math></span></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mo is=\\\"true\\\">≈</mo><mn is=\\\"true\\\">50000</mn><mspace width=\\\"0.33em\\\" is=\\\"true\\\"></mspace><msup is=\\\"true\\\"><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">s</mtext></mrow><mrow is=\\\"true\\\"><mo is=\\\"true\\\">−</mo><mn is=\\\"true\\\">1</mn></mrow></msup></mrow></math></script></span> to <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mo is=\\\"true\\\"&gt;&amp;#x2248;&lt;/mo&gt;&lt;mn is=\\\"true\\\"&gt;170000&lt;/mn&gt;&lt;mspace width=\\\"0.33em\\\" is=\\\"true\\\" /&gt;&lt;msup is=\\\"true\\\"&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mtext is=\\\"true\\\"&gt;s&lt;/mtext&gt;&lt;/mrow&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mo is=\\\"true\\\"&gt;&amp;#x2212;&lt;/mo&gt;&lt;mn is=\\\"true\\\"&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.317ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.235ex;\\\" viewbox=\\\"0 -896.2 5788.2 997.6\\\" width=\\\"13.444ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-2248\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(1056,0)\\\"><use xlink:href=\\\"#MJMAIN-31\\\"></use><use x=\\\"500\\\" xlink:href=\\\"#MJMAIN-37\\\" y=\\\"0\\\"></use><use x=\\\"1001\\\" xlink:href=\\\"#MJMAIN-30\\\" y=\\\"0\\\"></use><use x=\\\"1501\\\" xlink:href=\\\"#MJMAIN-30\\\" y=\\\"0\\\"></use><use x=\\\"2002\\\" xlink:href=\\\"#MJMAIN-30\\\" y=\\\"0\\\"></use><use x=\\\"2502\\\" xlink:href=\\\"#MJMAIN-30\\\" y=\\\"0\\\"></use></g><g is=\\\"true\\\"></g><g is=\\\"true\\\" transform=\\\"translate(4389,0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-73\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(394,362)\\\"><g is=\\\"true\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-2212\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(550,0)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-31\\\"></use></g></g></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><mo is=\\\"true\\\">≈</mo><mn is=\\\"true\\\">170000</mn><mspace is=\\\"true\\\" width=\\\"0.33em\\\"></mspace><msup is=\\\"true\\\"><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">s</mtext></mrow><mrow is=\\\"true\\\"><mo is=\\\"true\\\">−</mo><mn is=\\\"true\\\">1</mn></mrow></msup></mrow></math></span></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mo is=\\\"true\\\">≈</mo><mn is=\\\"true\\\">170000</mn><mspace width=\\\"0.33em\\\" is=\\\"true\\\"></mspace><msup is=\\\"true\\\"><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">s</mtext></mrow><mrow is=\\\"true\\\"><mo is=\\\"true\\\">−</mo><mn is=\\\"true\\\">1</mn></mrow></msup></mrow></math></script></span> across the tested impact velocity range. The target specimens have been soft-recovered, sized, and analyzed using scanning electron microscopy and X-ray tomography. The investigated impact velocities range from the onset of incipient spalling, characterized by discontinuous cracking and limited void growth, to the formation of a complete fracture spanning a large portion of the central section of the specimen, resulting from extensive cracking and the coalescence of numerous large voids. The X-ray tomography analysis provided three-dimensional reconstructions of the spallation, yielding quantitative data on the evolution of fracture size and volume with impact velocity. The scanning electron microscopy investigation revealed the mechanisms of void growth, coalescence, and intervoid cracking leading to spallation, without revealing a clear influence of the material microstructure on the crack propagation path.\",\"PeriodicalId\":340,\"journal\":{\"name\":\"International Journal of Plasticity\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":12.8000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Plasticity\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijplas.2025.104454\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ijplas.2025.104454","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了AF9628钢高速破碎和片状断裂的机理。为此,我们利用单级光气枪进行了25次环膨胀试验和36次平面板冲击试验,对AF9628的动态断裂特性进行了迄今为止规模最大、最全面的研究。环膨胀试验包括锥形头圆柱弹丸对固定薄壁管的轴向冲击,试样插在其上。弹丸圆柱形部分的横截面超过了管的内径,促使试样随着弹丸的推进而膨胀,最终导致在环的圆周上形成多个颈部和断裂。实验用两台高速摄像机记录下了试样的变形和断裂机制。将视频片段与光子多普勒测速系统同步,测量环径向速度的时间演变,从而建立了试样中颈形核、碎片形成与实际应变速率之间的相关性,所研究的冲击速度范围为≈240m/s≈240m/s至≈370m/s≈370m/s,应变速率范围为≈8000s−1≈8000s−1至≈15000s−1≈15000s−1。对碎片进行软回收,称重,大小,并利用扫描电子显微镜和x射线断层扫描分析断口表面。实验结果表明,随着膨胀速度的增加,颈段和破片的数量普遍增加。断口形貌研究和断口三维重建显示,等轴韧窝和椭圆韧窝混合在一起,表明拉伸破坏和剪切破坏,每种类型的优势都在裂缝中有所不同。平面板冲击实验是将圆盘状弹丸以≈380m/s≈380m/s ~≈780m/s≈780m/s的速度推进到静止的圆盘状目标。目标是弹丸厚度的两倍,将碎片平面大致定位在目标的中心。利用光子多普勒测速系统测量了目标自由表面的轴向速度,提供了冲击压力、冲击速度、冲击宽度、Hugoniot弹性极限、碎片强度和碎片平面内应变率的数据,这些数据在测试的冲击速度范围内从≈50000s−1≈50000s−1到≈1700000s−1≈1700000s−1。目标标本已软恢复,大小,并分析使用扫描电子显微镜和x射线断层扫描。所研究的冲击速度范围从以不连续开裂和有限空洞生长为特征的初期剥落开始,到跨越试样中部大部分区域的完整断裂的形成,这是由广泛的开裂和众多大空洞的合并造成的。x射线断层扫描分析提供了碎裂的三维重建,获得了裂缝尺寸和体积随冲击速度变化的定量数据。扫描电镜研究揭示了孔洞生长、聚并和间隙开裂导致裂裂的机制,但没有揭示材料微观结构对裂纹扩展路径的明确影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-velocity fragmentation and spall fracture of steel AF9628
This paper investigates the mechanics of high-velocity fragmentation and spall fracture of steel AF9628. For this purpose, we have conducted an experimental campaign comprising 25 ring expansion tests and 36 planar plate impact experiments utilizing a single-stage light-gas gun, resulting in the largest and most comprehensive investigation to date on the dynamic fracture properties of AF9628. The ring expansion tests involve the axial impact of a conical-nosed cylindrical projectile on a stationary thin-walled tube, over which the specimen is inserted. The cross-section of the cylindrical part of the projectile exceeds the inner diameter of the tube, prompting expansion of the sample as the projectile advances, ultimately leading to the formation of multiple necks and fractures across the circumference of the ring. The experiments were documented using two high-speed cameras to capture time-resolved insights into the specimen’s deformation and fracture mechanisms. The video footage was synchronized with a photonic Doppler velocimetry system to measure the time evolution of the radial speed of the ring, thereby establishing a correlation between the nucleation of necks, the formation of fragments, and the actual strain rate in the specimens, which ranged from 8000s1 to 15000s1 for the range of impact velocities investigated, spanning from 240m/s to 370m/s. The fragments were soft-recovered, weighed, sized, and the fracture surfaces were analyzed utilizing scanning electron microscopy and X-ray tomography. The experimental results demonstrate a general increase in both the number of necks and fragments with expansion velocity. The fractographic investigation and the 3D reconstruction of the fracture surfaces showed a mix of equiaxed dimples indicative of tensile failure and elliptical dimples suggestive of shear failure, with the predominance of each type varying across fractures. The planar plate impact experiments consists of propelling a disc-like projectile towards a stationary disc-like target at velocities ranging from 380m/s to 780m/s. The target is twice the thickness of the projectile, positioning the spall plane approximately at the center of the target. A photonic Doppler velocimetry system was utilized to measure the axial velocity of the free surface of the target, providing data on shock pressure, shock velocity, shock width, Hugoniot elastic limit, spall strength, and strain rate within the spall plane, which varied from 50000s1 to 170000s1 across the tested impact velocity range. The target specimens have been soft-recovered, sized, and analyzed using scanning electron microscopy and X-ray tomography. The investigated impact velocities range from the onset of incipient spalling, characterized by discontinuous cracking and limited void growth, to the formation of a complete fracture spanning a large portion of the central section of the specimen, resulting from extensive cracking and the coalescence of numerous large voids. The X-ray tomography analysis provided three-dimensional reconstructions of the spallation, yielding quantitative data on the evolution of fracture size and volume with impact velocity. The scanning electron microscopy investigation revealed the mechanisms of void growth, coalescence, and intervoid cracking leading to spallation, without revealing a clear influence of the material microstructure on the crack propagation path.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Plasticity
International Journal of Plasticity 工程技术-材料科学:综合
CiteScore
15.30
自引率
26.50%
发文量
256
审稿时长
46 days
期刊介绍: International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena. Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信