Qianwen Liu, Jingfeng Li, Xiuqiao Sun, Jiayu Lin, Zhengwei Yu, Yue Xiao, Dan Li, Baofa Sun, Haili Bao, Yihao Liu
{"title":"免疫衰老和癌症:分子标志、肿瘤微环境重塑和年龄特异性免疫治疗挑战","authors":"Qianwen Liu, Jingfeng Li, Xiuqiao Sun, Jiayu Lin, Zhengwei Yu, Yue Xiao, Dan Li, Baofa Sun, Haili Bao, Yihao Liu","doi":"10.1186/s13045-025-01735-w","DOIUrl":null,"url":null,"abstract":"Immunosenescence, the age-related decline in immune function, profoundly impacts cancer progression and therapeutic outcomes by fostering a tumor-promoting microenvironment and impairing immune surveillance. This review delineates eleven molecular hallmarks of immunosenescence, including genomic instability, telomere attrition, epigenetic dysregulation, mitochondrial dysfunction, and chronic inflammation, which collectively drive immune cell dysfunction and systemic immunosuppression. Aging reshapes the tumor microenvironment (TME) through recruitment of immunosuppressive cells, senescence-associated secretory phenotypes (SASP), and metabolic reprogramming, contributing to therapy resistance and poor prognosis in elderly patients. While immunotherapies such as immune checkpoint inhibitors (ICIs) and chimeric antigen receptor T-cell immunotherapy (CAR-T) cells show promise, their efficacy in aging populations is limited by T cell exhaustion, myeloid bias, and altered intercellular communication. Emerging strategies—including senolytics, epigenetic modulators (e.g., histone deacetylase (HDAC) inhibitor), and metabolic interventions (e.g., spermidine, nicotinamide mononucleotide (NMN))—highlight potential avenues to rejuvenate aged immunity. Single-cell multi-omics (single cell RNA-seq, single cell ATAC-seq) further unravel immune cell heterogeneity, revealing tissue-specific chromatin accessibility dynamics and novel targets like interleukin-34 (IL-34) for microglia-mediated neuroinflammation. However, challenges persist in translating preclinical findings to clinical practice, necessitating age-tailored trials and biomarker-driven approaches. By integrating mechanistic insights with translational innovations, this review underscores the urgency of addressing immunosenescence to optimize cancer immunotherapy for aging populations, ultimately bridging the gap between aging biology and precision oncology.","PeriodicalId":16023,"journal":{"name":"Journal of Hematology & Oncology","volume":"15 1","pages":""},"PeriodicalIF":40.4000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Immunosenescence and cancer: molecular hallmarks, tumor microenvironment remodeling, and age-specific immunotherapy challenges\",\"authors\":\"Qianwen Liu, Jingfeng Li, Xiuqiao Sun, Jiayu Lin, Zhengwei Yu, Yue Xiao, Dan Li, Baofa Sun, Haili Bao, Yihao Liu\",\"doi\":\"10.1186/s13045-025-01735-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Immunosenescence, the age-related decline in immune function, profoundly impacts cancer progression and therapeutic outcomes by fostering a tumor-promoting microenvironment and impairing immune surveillance. This review delineates eleven molecular hallmarks of immunosenescence, including genomic instability, telomere attrition, epigenetic dysregulation, mitochondrial dysfunction, and chronic inflammation, which collectively drive immune cell dysfunction and systemic immunosuppression. Aging reshapes the tumor microenvironment (TME) through recruitment of immunosuppressive cells, senescence-associated secretory phenotypes (SASP), and metabolic reprogramming, contributing to therapy resistance and poor prognosis in elderly patients. While immunotherapies such as immune checkpoint inhibitors (ICIs) and chimeric antigen receptor T-cell immunotherapy (CAR-T) cells show promise, their efficacy in aging populations is limited by T cell exhaustion, myeloid bias, and altered intercellular communication. Emerging strategies—including senolytics, epigenetic modulators (e.g., histone deacetylase (HDAC) inhibitor), and metabolic interventions (e.g., spermidine, nicotinamide mononucleotide (NMN))—highlight potential avenues to rejuvenate aged immunity. Single-cell multi-omics (single cell RNA-seq, single cell ATAC-seq) further unravel immune cell heterogeneity, revealing tissue-specific chromatin accessibility dynamics and novel targets like interleukin-34 (IL-34) for microglia-mediated neuroinflammation. However, challenges persist in translating preclinical findings to clinical practice, necessitating age-tailored trials and biomarker-driven approaches. By integrating mechanistic insights with translational innovations, this review underscores the urgency of addressing immunosenescence to optimize cancer immunotherapy for aging populations, ultimately bridging the gap between aging biology and precision oncology.\",\"PeriodicalId\":16023,\"journal\":{\"name\":\"Journal of Hematology & Oncology\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":40.4000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hematology & Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13045-025-01735-w\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hematology & Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13045-025-01735-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
Immunosenescence and cancer: molecular hallmarks, tumor microenvironment remodeling, and age-specific immunotherapy challenges
Immunosenescence, the age-related decline in immune function, profoundly impacts cancer progression and therapeutic outcomes by fostering a tumor-promoting microenvironment and impairing immune surveillance. This review delineates eleven molecular hallmarks of immunosenescence, including genomic instability, telomere attrition, epigenetic dysregulation, mitochondrial dysfunction, and chronic inflammation, which collectively drive immune cell dysfunction and systemic immunosuppression. Aging reshapes the tumor microenvironment (TME) through recruitment of immunosuppressive cells, senescence-associated secretory phenotypes (SASP), and metabolic reprogramming, contributing to therapy resistance and poor prognosis in elderly patients. While immunotherapies such as immune checkpoint inhibitors (ICIs) and chimeric antigen receptor T-cell immunotherapy (CAR-T) cells show promise, their efficacy in aging populations is limited by T cell exhaustion, myeloid bias, and altered intercellular communication. Emerging strategies—including senolytics, epigenetic modulators (e.g., histone deacetylase (HDAC) inhibitor), and metabolic interventions (e.g., spermidine, nicotinamide mononucleotide (NMN))—highlight potential avenues to rejuvenate aged immunity. Single-cell multi-omics (single cell RNA-seq, single cell ATAC-seq) further unravel immune cell heterogeneity, revealing tissue-specific chromatin accessibility dynamics and novel targets like interleukin-34 (IL-34) for microglia-mediated neuroinflammation. However, challenges persist in translating preclinical findings to clinical practice, necessitating age-tailored trials and biomarker-driven approaches. By integrating mechanistic insights with translational innovations, this review underscores the urgency of addressing immunosenescence to optimize cancer immunotherapy for aging populations, ultimately bridging the gap between aging biology and precision oncology.
期刊介绍:
The Journal of Hematology & Oncology, an open-access journal, publishes high-quality research covering all aspects of hematology and oncology, including reviews and research highlights on "hot topics" by leading experts.
Given the close relationship and rapid evolution of hematology and oncology, the journal aims to meet the demand for a dedicated platform for publishing discoveries from both fields. It serves as an international platform for sharing laboratory and clinical findings among laboratory scientists, physician scientists, hematologists, and oncologists in an open-access format. With a rapid turnaround time from submission to publication, the journal facilitates real-time sharing of knowledge and new successes.