基于HDRSL网络的精确高动态范围成像结构光三维重建

IF 13.7
Hao Wang;Chaobo Zhang;Xiang Qian;Xiaohao Wang;Weihua Gui;Wen Gao;Xiaojun Liang;Xinghui Li
{"title":"基于HDRSL网络的精确高动态范围成像结构光三维重建","authors":"Hao Wang;Chaobo Zhang;Xiang Qian;Xiaohao Wang;Weihua Gui;Wen Gao;Xiaojun Liang;Xinghui Li","doi":"10.1109/TIP.2025.3599934","DOIUrl":null,"url":null,"abstract":"In fringe projection profilometry systems, accurately reconstructing 3D objects with varying surface reflectivity requires high dynamic range (HDR) imaging. However, the limited dynamic range of single-exposure cameras poses challenges for capturing HDR fringe patterns efficiently. This paper introduces a deep learning-based HDR structured light 3D reconstruction pipeline, comprising an HDR Fringe Generation Module and a Phase Calculation Module. The HDR Fringe Generation Module employs an end-to-end network with attention guidance and feature distillation to reconstruct HDR fringe images from short- and long-exposure low dynamic range (LDR) inputs. The Phase Calculation Module processes the phase information from HDR fringes to enable 3D reconstruction. On a metallic HDR dataset, the method achieved a phase error of 0.105, comparable to the 4-exposure 6-step Phase Shifting Profilometry (PSP) method (0.069), with only 8.3% of the projection time. Experimental results demonstrate the robustness of our approach under diverse object geometries, exposure levels, and challenging global illumination environments. In quantitative measurements, our method achieved accuracies of sub-50<inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula>m on ceramic spheres, flat plates and metal step object. Ablation experiments confirmed that feature distillation and attention module effectively enhance the HDR Fringe Generation Module, producing high-quality HDR fringe patterns critical for reconstructing objects with HDR surface reflectivity. Furthermore, we constructed an HDR imaging metal dataset comprising 1,700 samples of machined metal parts with diverse shapes, sizes, and materials, making it a benchmark in the field of HDR structured light measurement. Our method offers a general HDR imaging-based structured light 3D reconstruction approach, integrating the two modules into an efficient, end-to-end solution for objects with HDR reflective surfaces.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"5486-5499"},"PeriodicalIF":13.7000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HDRSL Net for Accurate High Dynamic Range Imaging-Based Structured Light 3D Reconstruction\",\"authors\":\"Hao Wang;Chaobo Zhang;Xiang Qian;Xiaohao Wang;Weihua Gui;Wen Gao;Xiaojun Liang;Xinghui Li\",\"doi\":\"10.1109/TIP.2025.3599934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In fringe projection profilometry systems, accurately reconstructing 3D objects with varying surface reflectivity requires high dynamic range (HDR) imaging. However, the limited dynamic range of single-exposure cameras poses challenges for capturing HDR fringe patterns efficiently. This paper introduces a deep learning-based HDR structured light 3D reconstruction pipeline, comprising an HDR Fringe Generation Module and a Phase Calculation Module. The HDR Fringe Generation Module employs an end-to-end network with attention guidance and feature distillation to reconstruct HDR fringe images from short- and long-exposure low dynamic range (LDR) inputs. The Phase Calculation Module processes the phase information from HDR fringes to enable 3D reconstruction. On a metallic HDR dataset, the method achieved a phase error of 0.105, comparable to the 4-exposure 6-step Phase Shifting Profilometry (PSP) method (0.069), with only 8.3% of the projection time. Experimental results demonstrate the robustness of our approach under diverse object geometries, exposure levels, and challenging global illumination environments. In quantitative measurements, our method achieved accuracies of sub-50<inline-formula> <tex-math>$\\\\mu $ </tex-math></inline-formula>m on ceramic spheres, flat plates and metal step object. Ablation experiments confirmed that feature distillation and attention module effectively enhance the HDR Fringe Generation Module, producing high-quality HDR fringe patterns critical for reconstructing objects with HDR surface reflectivity. Furthermore, we constructed an HDR imaging metal dataset comprising 1,700 samples of machined metal parts with diverse shapes, sizes, and materials, making it a benchmark in the field of HDR structured light measurement. Our method offers a general HDR imaging-based structured light 3D reconstruction approach, integrating the two modules into an efficient, end-to-end solution for objects with HDR reflective surfaces.\",\"PeriodicalId\":94032,\"journal\":{\"name\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"volume\":\"34 \",\"pages\":\"5486-5499\"},\"PeriodicalIF\":13.7000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11139108/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11139108/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在条纹投影轮廓测量系统中,精确重建具有不同表面反射率的三维物体需要高动态范围(HDR)成像。然而,单曝光相机有限的动态范围对高效捕捉HDR条纹图案提出了挑战。介绍了一种基于深度学习的HDR结构光三维重建流水线,包括HDR条纹生成模块和相位计算模块。HDR条纹生成模块采用具有注意力引导和特征蒸馏的端到端网络,从短曝光和长曝光低动态范围(LDR)输入中重建HDR条纹图像。相位计算模块处理来自HDR条纹的相位信息以实现3D重建。在金属HDR数据集上,该方法的相位误差为0.105,与4曝光6步相移轮廓术(PSP)方法(0.069)相当,投影时间仅为8.3%。实验结果证明了我们的方法在不同物体几何形状、曝光水平和具有挑战性的全局照明环境下的鲁棒性。在定量测量中,我们的方法在陶瓷球、平板和金属台阶物体上的精度达到了50 μ m以下。烧蚀实验证实,特征蒸馏和注意模块有效增强了HDR条纹生成模块,生成了高质量的HDR条纹图,这对于利用HDR表面反射率重建目标至关重要。此外,我们构建了一个包含1700个不同形状、尺寸和材料的金属加工零件样本的HDR成像金属数据集,使其成为HDR结构光测量领域的基准。我们的方法提供了一种通用的基于HDR成像的结构光3D重建方法,将两个模块集成为具有HDR反射表面的物体的高效端到端解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HDRSL Net for Accurate High Dynamic Range Imaging-Based Structured Light 3D Reconstruction
In fringe projection profilometry systems, accurately reconstructing 3D objects with varying surface reflectivity requires high dynamic range (HDR) imaging. However, the limited dynamic range of single-exposure cameras poses challenges for capturing HDR fringe patterns efficiently. This paper introduces a deep learning-based HDR structured light 3D reconstruction pipeline, comprising an HDR Fringe Generation Module and a Phase Calculation Module. The HDR Fringe Generation Module employs an end-to-end network with attention guidance and feature distillation to reconstruct HDR fringe images from short- and long-exposure low dynamic range (LDR) inputs. The Phase Calculation Module processes the phase information from HDR fringes to enable 3D reconstruction. On a metallic HDR dataset, the method achieved a phase error of 0.105, comparable to the 4-exposure 6-step Phase Shifting Profilometry (PSP) method (0.069), with only 8.3% of the projection time. Experimental results demonstrate the robustness of our approach under diverse object geometries, exposure levels, and challenging global illumination environments. In quantitative measurements, our method achieved accuracies of sub-50 $\mu $ m on ceramic spheres, flat plates and metal step object. Ablation experiments confirmed that feature distillation and attention module effectively enhance the HDR Fringe Generation Module, producing high-quality HDR fringe patterns critical for reconstructing objects with HDR surface reflectivity. Furthermore, we constructed an HDR imaging metal dataset comprising 1,700 samples of machined metal parts with diverse shapes, sizes, and materials, making it a benchmark in the field of HDR structured light measurement. Our method offers a general HDR imaging-based structured light 3D reconstruction approach, integrating the two modules into an efficient, end-to-end solution for objects with HDR reflective surfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信