阴性训练数据对稳健抗体结合预测的重要性

IF 23.9 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Wesley Ta, Jonathan M. Stokes
{"title":"阴性训练数据对稳健抗体结合预测的重要性","authors":"Wesley Ta, Jonathan M. Stokes","doi":"10.1038/s42256-025-01080-0","DOIUrl":null,"url":null,"abstract":"Thoughtfully designed negative training datasets may hold the key to more robust machine learning models. Ursu et al. reveal how negative training data composition shapes antibody prediction models and their generalizability. Sometimes, the best way to get better is to train harder.","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"7 8","pages":"1192-1194"},"PeriodicalIF":23.9000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The importance of negative training data for robust antibody binding prediction\",\"authors\":\"Wesley Ta, Jonathan M. Stokes\",\"doi\":\"10.1038/s42256-025-01080-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thoughtfully designed negative training datasets may hold the key to more robust machine learning models. Ursu et al. reveal how negative training data composition shapes antibody prediction models and their generalizability. Sometimes, the best way to get better is to train harder.\",\"PeriodicalId\":48533,\"journal\":{\"name\":\"Nature Machine Intelligence\",\"volume\":\"7 8\",\"pages\":\"1192-1194\"},\"PeriodicalIF\":23.9000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Machine Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.nature.com/articles/s42256-025-01080-0\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.nature.com/articles/s42256-025-01080-0","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

精心设计的负训练数据集可能是更强大的机器学习模型的关键。Ursu等人揭示了负训练数据组成如何塑造抗体预测模型及其泛化性。有时候,变得更好的最好方法就是更加努力地训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The importance of negative training data for robust antibody binding prediction

The importance of negative training data for robust antibody binding prediction

The importance of negative training data for robust antibody binding prediction
Thoughtfully designed negative training datasets may hold the key to more robust machine learning models. Ursu et al. reveal how negative training data composition shapes antibody prediction models and their generalizability. Sometimes, the best way to get better is to train harder.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
36.90
自引率
2.10%
发文量
127
期刊介绍: Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements. To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects. Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信