{"title":"用DeCEP从单细胞和空间转录组学数据中破译上下文特异性基因程序","authors":"Lin Li, Xianbin Su, Ze-Guang Han","doi":"10.1101/gr.279689.124","DOIUrl":null,"url":null,"abstract":"Functional gene programs play a wide range of roles in health and disease by orchestrating transcriptional coregulation to govern cell identity. Understanding these intricate gene programs is essential for unraveling the complexities of biological systems; however, deciphering them remains a significant challenge. Recent advancements in single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) technologies have empowered the comprehensive characterization of gene programs at both single-cell and spatial resolutions. Here, we present DeCEP, a computational framework designed to characterize context-specific gene programs using scRNA-seq and ST data. DeCEP leverages functional gene lists and directed graphs to construct functional networks underlying distinct cellular or spatial contexts. It then identifies context-dependent hub genes associated with specific gene programs based on network topology and assigns gene program activity to individual cells or spatial locations. Through evaluation on both simulated and real biological datasets, DeCEP demonstrates complementary strengths over existing methods by enabling more fine-grained characterization of gene programs within specific contexts, particularly those characterized by pronounced transcriptional heterogeneity. Furthermore, we showcase the ability of DeCEP in elucidating biological insights through case studies on normal liver tissue, Alzheimer' disease, and cancer.","PeriodicalId":12678,"journal":{"name":"Genome research","volume":"38 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deciphering context-specific gene programs from single-cell and spatial transcriptomics data with DeCEP\",\"authors\":\"Lin Li, Xianbin Su, Ze-Guang Han\",\"doi\":\"10.1101/gr.279689.124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Functional gene programs play a wide range of roles in health and disease by orchestrating transcriptional coregulation to govern cell identity. Understanding these intricate gene programs is essential for unraveling the complexities of biological systems; however, deciphering them remains a significant challenge. Recent advancements in single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) technologies have empowered the comprehensive characterization of gene programs at both single-cell and spatial resolutions. Here, we present DeCEP, a computational framework designed to characterize context-specific gene programs using scRNA-seq and ST data. DeCEP leverages functional gene lists and directed graphs to construct functional networks underlying distinct cellular or spatial contexts. It then identifies context-dependent hub genes associated with specific gene programs based on network topology and assigns gene program activity to individual cells or spatial locations. Through evaluation on both simulated and real biological datasets, DeCEP demonstrates complementary strengths over existing methods by enabling more fine-grained characterization of gene programs within specific contexts, particularly those characterized by pronounced transcriptional heterogeneity. Furthermore, we showcase the ability of DeCEP in elucidating biological insights through case studies on normal liver tissue, Alzheimer' disease, and cancer.\",\"PeriodicalId\":12678,\"journal\":{\"name\":\"Genome research\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1101/gr.279689.124\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/gr.279689.124","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Deciphering context-specific gene programs from single-cell and spatial transcriptomics data with DeCEP
Functional gene programs play a wide range of roles in health and disease by orchestrating transcriptional coregulation to govern cell identity. Understanding these intricate gene programs is essential for unraveling the complexities of biological systems; however, deciphering them remains a significant challenge. Recent advancements in single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) technologies have empowered the comprehensive characterization of gene programs at both single-cell and spatial resolutions. Here, we present DeCEP, a computational framework designed to characterize context-specific gene programs using scRNA-seq and ST data. DeCEP leverages functional gene lists and directed graphs to construct functional networks underlying distinct cellular or spatial contexts. It then identifies context-dependent hub genes associated with specific gene programs based on network topology and assigns gene program activity to individual cells or spatial locations. Through evaluation on both simulated and real biological datasets, DeCEP demonstrates complementary strengths over existing methods by enabling more fine-grained characterization of gene programs within specific contexts, particularly those characterized by pronounced transcriptional heterogeneity. Furthermore, we showcase the ability of DeCEP in elucidating biological insights through case studies on normal liver tissue, Alzheimer' disease, and cancer.
期刊介绍:
Launched in 1995, Genome Research is an international, continuously published, peer-reviewed journal that focuses on research that provides novel insights into the genome biology of all organisms, including advances in genomic medicine.
Among the topics considered by the journal are genome structure and function, comparative genomics, molecular evolution, genome-scale quantitative and population genetics, proteomics, epigenomics, and systems biology. The journal also features exciting gene discoveries and reports of cutting-edge computational biology and high-throughput methodologies.
New data in these areas are published as research papers, or methods and resource reports that provide novel information on technologies or tools that will be of interest to a broad readership. Complete data sets are presented electronically on the journal''s web site where appropriate. The journal also provides Reviews, Perspectives, and Insight/Outlook articles, which present commentary on the latest advances published both here and elsewhere, placing such progress in its broader biological context.