Senbai Kang, Nico Borgsmüller, Monica Valecha, Magda Markowska, Jack Kuipers, Niko Beerenwinkel, David Posada, Ewa Szczurek
{"title":"DelSIEVE:单细胞DNA测序数据中单核苷酸变异和缺失的细胞系统发育模型","authors":"Senbai Kang, Nico Borgsmüller, Monica Valecha, Magda Markowska, Jack Kuipers, Niko Beerenwinkel, David Posada, Ewa Szczurek","doi":"10.1186/s13059-025-03738-9","DOIUrl":null,"url":null,"abstract":"With rapid advancements in single-cell DNA sequencing (scDNA-seq), various computational methods have been developed to study evolution and call variants on single-cell level. However, modeling deletions remains challenging because they affect total coverage in ways that are difficult to distinguish from technical artifacts. We present DelSIEVE, a statistical method that infers cell phylogeny and single-nucleotide variants, accounting for deletions, from scDNA-seq data. DelSIEVE distinguishes deletions from mutations and artifacts, detecting more evolutionary events than previous methods. Simulations show high performance, and application to cancer samples reveals varying amounts of deletions and double mutants in different tumors.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"18 4 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DelSIEVE: cell phylogeny modeling of single nucleotide variants and deletions from single-cell DNA sequencing data\",\"authors\":\"Senbai Kang, Nico Borgsmüller, Monica Valecha, Magda Markowska, Jack Kuipers, Niko Beerenwinkel, David Posada, Ewa Szczurek\",\"doi\":\"10.1186/s13059-025-03738-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With rapid advancements in single-cell DNA sequencing (scDNA-seq), various computational methods have been developed to study evolution and call variants on single-cell level. However, modeling deletions remains challenging because they affect total coverage in ways that are difficult to distinguish from technical artifacts. We present DelSIEVE, a statistical method that infers cell phylogeny and single-nucleotide variants, accounting for deletions, from scDNA-seq data. DelSIEVE distinguishes deletions from mutations and artifacts, detecting more evolutionary events than previous methods. Simulations show high performance, and application to cancer samples reveals varying amounts of deletions and double mutants in different tumors.\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"18 4 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-025-03738-9\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03738-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
DelSIEVE: cell phylogeny modeling of single nucleotide variants and deletions from single-cell DNA sequencing data
With rapid advancements in single-cell DNA sequencing (scDNA-seq), various computational methods have been developed to study evolution and call variants on single-cell level. However, modeling deletions remains challenging because they affect total coverage in ways that are difficult to distinguish from technical artifacts. We present DelSIEVE, a statistical method that infers cell phylogeny and single-nucleotide variants, accounting for deletions, from scDNA-seq data. DelSIEVE distinguishes deletions from mutations and artifacts, detecting more evolutionary events than previous methods. Simulations show high performance, and application to cancer samples reveals varying amounts of deletions and double mutants in different tumors.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.