高性能聚烯烃共价有机骨架导向链生长

IF 5.2 1区 化学 Q1 POLYMER SCIENCE
Yangke Xiao, Xue Chen, Xingfen Huang, Kan Liu, Bangban Zhu, Wei Li, Minghao Sun, Haitao Wang, Shengbin Shi*, Zhibin Ye, Hanyu Gao, Wen-Jun Wang, Bo-Geng Li and Pingwei Liu*, 
{"title":"高性能聚烯烃共价有机骨架导向链生长","authors":"Yangke Xiao,&nbsp;Xue Chen,&nbsp;Xingfen Huang,&nbsp;Kan Liu,&nbsp;Bangban Zhu,&nbsp;Wei Li,&nbsp;Minghao Sun,&nbsp;Haitao Wang,&nbsp;Shengbin Shi*,&nbsp;Zhibin Ye,&nbsp;Hanyu Gao,&nbsp;Wen-Jun Wang,&nbsp;Bo-Geng Li and Pingwei Liu*,&nbsp;","doi":"10.1021/acs.macromol.5c00873","DOIUrl":null,"url":null,"abstract":"<p >Polyolefins have long dominated materials technology and polymer production; yet enhancing mechanical strength, toughness, and processability in high-performance polyolefins still remains a challenge. Herein, we use minimal quantities of covalent organic frameworks (COFs) to engineer the native aggregate structure of polyethylene (PE). By employing in situ ethylene polymerization, we synthesized high-performance COF-PE composites with unique nanofibrous structures at COF loadings of 0.02 wt %. Specifically, hydroxyl-functionalized imine-based COFs act as macroligands for bis(cyclopentadienyl)zirconium dichloride (Cp<sub>2</sub>ZrCl<sub>2</sub>), establishing a unique spatial confinement on chain growth. The resulting COF-PE composite exhibits a weight-average molecular weight (<i>M</i><sub>w</sub>) of up to 240.0 kDa (increasing 118%), a narrow molecular weight distribution (<i>Đ</i> as low as 1.9), and an elevated melting point (<i>T</i><sub>m</sub>) of 139.2 °C (4.5 °C higher) compared to pure PE. Moreover, the composite exhibits an outstanding tensile strength of 45.5 MPa and an unprecedented elongation at break of 1832%, outperforming both literature-reported and commercial counterparts. Remarkably, it demonstrates enhanced melt processability above <i>T</i><sub>m</sub>, evidenced by a reduced zero-shear viscosity (η<sub>0</sub>) of 3953 Pa·s. Structural analyses reveal COF rigidity-dependent crystalline reinforcement, featuring thickened lamellae (15.1–17.0 nm) and tunable nanofibrous diameters (123–512 nm). This work demonstrates COF-immobilized catalysts enabling polyolefin nanostructural engineering for simultaneous mechanical enhancement and processing optimization.</p>","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"58 17","pages":"9075–9082"},"PeriodicalIF":5.2000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Covalent Organic Framework-Oriented Chain Growth for High-Performance Polyolefins\",\"authors\":\"Yangke Xiao,&nbsp;Xue Chen,&nbsp;Xingfen Huang,&nbsp;Kan Liu,&nbsp;Bangban Zhu,&nbsp;Wei Li,&nbsp;Minghao Sun,&nbsp;Haitao Wang,&nbsp;Shengbin Shi*,&nbsp;Zhibin Ye,&nbsp;Hanyu Gao,&nbsp;Wen-Jun Wang,&nbsp;Bo-Geng Li and Pingwei Liu*,&nbsp;\",\"doi\":\"10.1021/acs.macromol.5c00873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Polyolefins have long dominated materials technology and polymer production; yet enhancing mechanical strength, toughness, and processability in high-performance polyolefins still remains a challenge. Herein, we use minimal quantities of covalent organic frameworks (COFs) to engineer the native aggregate structure of polyethylene (PE). By employing in situ ethylene polymerization, we synthesized high-performance COF-PE composites with unique nanofibrous structures at COF loadings of 0.02 wt %. Specifically, hydroxyl-functionalized imine-based COFs act as macroligands for bis(cyclopentadienyl)zirconium dichloride (Cp<sub>2</sub>ZrCl<sub>2</sub>), establishing a unique spatial confinement on chain growth. The resulting COF-PE composite exhibits a weight-average molecular weight (<i>M</i><sub>w</sub>) of up to 240.0 kDa (increasing 118%), a narrow molecular weight distribution (<i>Đ</i> as low as 1.9), and an elevated melting point (<i>T</i><sub>m</sub>) of 139.2 °C (4.5 °C higher) compared to pure PE. Moreover, the composite exhibits an outstanding tensile strength of 45.5 MPa and an unprecedented elongation at break of 1832%, outperforming both literature-reported and commercial counterparts. Remarkably, it demonstrates enhanced melt processability above <i>T</i><sub>m</sub>, evidenced by a reduced zero-shear viscosity (η<sub>0</sub>) of 3953 Pa·s. Structural analyses reveal COF rigidity-dependent crystalline reinforcement, featuring thickened lamellae (15.1–17.0 nm) and tunable nanofibrous diameters (123–512 nm). This work demonstrates COF-immobilized catalysts enabling polyolefin nanostructural engineering for simultaneous mechanical enhancement and processing optimization.</p>\",\"PeriodicalId\":51,\"journal\":{\"name\":\"Macromolecules\",\"volume\":\"58 17\",\"pages\":\"9075–9082\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.macromol.5c00873\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.macromol.5c00873","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

聚烯烃长期以来主导着材料技术和聚合物生产;然而,提高高性能聚烯烃的机械强度、韧性和加工性仍然是一个挑战。在这里,我们使用最少量的共价有机框架(COFs)来设计聚乙烯(PE)的天然聚集体结构。通过原位乙烯聚合,我们合成了具有独特纳米纤维结构的高性能COF- pe复合材料,COF负载为0.02 wt %。具体来说,羟基功能化亚胺基COFs作为双(环戊二烯基)二氯化锆(Cp2ZrCl2)的大配体,建立了独特的链生长空间限制。所得COF-PE复合材料的分子量(Mw)高达240.0 kDa(增加118%),分子量分布窄(Đ低至1.9),熔点(Tm)比纯PE高139.2°C(高4.5°C)。此外,该复合材料具有45.5 MPa的抗拉强度和1832%的断裂伸长率,优于文献报道和商业同类材料。值得注意的是,熔体加工性能在Tm以上得到增强,零剪切粘度(η0)降低至3953 Pa·s。结构分析显示,COF的晶体增强与硬度有关,具有加厚的片层(15.1-17.0 nm)和可调的纳米纤维直径(123-512 nm)。这项工作证明了cof固定化催化剂能够使聚烯烃纳米结构工程同时实现机械增强和工艺优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Covalent Organic Framework-Oriented Chain Growth for High-Performance Polyolefins

Covalent Organic Framework-Oriented Chain Growth for High-Performance Polyolefins

Covalent Organic Framework-Oriented Chain Growth for High-Performance Polyolefins

Polyolefins have long dominated materials technology and polymer production; yet enhancing mechanical strength, toughness, and processability in high-performance polyolefins still remains a challenge. Herein, we use minimal quantities of covalent organic frameworks (COFs) to engineer the native aggregate structure of polyethylene (PE). By employing in situ ethylene polymerization, we synthesized high-performance COF-PE composites with unique nanofibrous structures at COF loadings of 0.02 wt %. Specifically, hydroxyl-functionalized imine-based COFs act as macroligands for bis(cyclopentadienyl)zirconium dichloride (Cp2ZrCl2), establishing a unique spatial confinement on chain growth. The resulting COF-PE composite exhibits a weight-average molecular weight (Mw) of up to 240.0 kDa (increasing 118%), a narrow molecular weight distribution (Đ as low as 1.9), and an elevated melting point (Tm) of 139.2 °C (4.5 °C higher) compared to pure PE. Moreover, the composite exhibits an outstanding tensile strength of 45.5 MPa and an unprecedented elongation at break of 1832%, outperforming both literature-reported and commercial counterparts. Remarkably, it demonstrates enhanced melt processability above Tm, evidenced by a reduced zero-shear viscosity (η0) of 3953 Pa·s. Structural analyses reveal COF rigidity-dependent crystalline reinforcement, featuring thickened lamellae (15.1–17.0 nm) and tunable nanofibrous diameters (123–512 nm). This work demonstrates COF-immobilized catalysts enabling polyolefin nanostructural engineering for simultaneous mechanical enhancement and processing optimization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecules
Macromolecules 工程技术-高分子科学
CiteScore
9.30
自引率
16.40%
发文量
942
审稿时长
2 months
期刊介绍: Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信