{"title":"基塔耶夫材料中的量子自旋液相","authors":"Po-Hao Chou, Chung-Yu Mou, Chung-Hou Chung, Sungkit Yip","doi":"10.1038/s41535-025-00811-1","DOIUrl":null,"url":null,"abstract":"<p>We develop a gauge-invariant renormalized mean-field theory (RMFT) to reliably find the quantum spin liquid (QSL) states and their field response for realistic Kitaev materials under strong magnetic fields and described by the generalized Kitaev <i>J</i>-<i>K</i>-Γ-<span>\\({\\Gamma }^{{\\prime} }\\)</span> model. Remarkably, while our RMFT reproduces previous results based on using more complicated numerical methods, it also predicts several new stable QSL states. In particular, since Kitaev spin liquid (KSL) is no longer a saddle point solution, a new exotic 2-cone state distinct from the KSL is found to describe experimental observations well, and hence should be the candidate state realized in the Kitaev material, <i>α</i>-RuCl<sub>3</sub>. We further explore the mechanism for the suppression of the observed thermal Hall conductivity at low temperatures within the fermionic framework, and show that the polar-angle dependence of the fermionic gap can distinguish the found 2-cone state from the KSL state in further experiments.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"19 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum spin liquid phases in Kitaev materials\",\"authors\":\"Po-Hao Chou, Chung-Yu Mou, Chung-Hou Chung, Sungkit Yip\",\"doi\":\"10.1038/s41535-025-00811-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We develop a gauge-invariant renormalized mean-field theory (RMFT) to reliably find the quantum spin liquid (QSL) states and their field response for realistic Kitaev materials under strong magnetic fields and described by the generalized Kitaev <i>J</i>-<i>K</i>-Γ-<span>\\\\({\\\\Gamma }^{{\\\\prime} }\\\\)</span> model. Remarkably, while our RMFT reproduces previous results based on using more complicated numerical methods, it also predicts several new stable QSL states. In particular, since Kitaev spin liquid (KSL) is no longer a saddle point solution, a new exotic 2-cone state distinct from the KSL is found to describe experimental observations well, and hence should be the candidate state realized in the Kitaev material, <i>α</i>-RuCl<sub>3</sub>. We further explore the mechanism for the suppression of the observed thermal Hall conductivity at low temperatures within the fermionic framework, and show that the polar-angle dependence of the fermionic gap can distinguish the found 2-cone state from the KSL state in further experiments.</p>\",\"PeriodicalId\":19283,\"journal\":{\"name\":\"npj Quantum Materials\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41535-025-00811-1\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-025-00811-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
We develop a gauge-invariant renormalized mean-field theory (RMFT) to reliably find the quantum spin liquid (QSL) states and their field response for realistic Kitaev materials under strong magnetic fields and described by the generalized Kitaev J-K-Γ-\({\Gamma }^{{\prime} }\) model. Remarkably, while our RMFT reproduces previous results based on using more complicated numerical methods, it also predicts several new stable QSL states. In particular, since Kitaev spin liquid (KSL) is no longer a saddle point solution, a new exotic 2-cone state distinct from the KSL is found to describe experimental observations well, and hence should be the candidate state realized in the Kitaev material, α-RuCl3. We further explore the mechanism for the suppression of the observed thermal Hall conductivity at low temperatures within the fermionic framework, and show that the polar-angle dependence of the fermionic gap can distinguish the found 2-cone state from the KSL state in further experiments.
期刊介绍:
npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.