Hyeonhu Bae, Roser Valentí, Igor I. Mazin, Binghai Yan
{"title":"TaS2三层异质结构的平带、局域和流动态设计","authors":"Hyeonhu Bae, Roser Valentí, Igor I. Mazin, Binghai Yan","doi":"10.1038/s41535-025-00812-0","DOIUrl":null,"url":null,"abstract":"<p>Stacking and twisting van der Waals materials provides a powerful tool to engineer quantum matter. For instance, 1T-TaS<sub>2</sub> monolayers are Mott insulators, whereas layered 1H-TaS<sub>2</sub> is metallic and superconducting; thus, the T/H bilayer, where heavy fermions and unconventional superconducting phases are expected from localized spins (1T) coexisting with itinerant electrons (1H), has been intensively studied. However, recent studies revealed significant charge transfer that questions this scenario. Here, we propose a T/T/H trilayer heterostructure where the T/T bilayer is a flat-dispersion band insulator with localized electrons, whereas the 1H layer remains metallic with a weak spin polarization. Varying the T/T stacking configuration tunes the flat-band filling, enabling a crossover from a doped-Mott regime to a Kondo-like state. Such a trilayer heterostructure provides, therefore, a rich novel platform to study strong correlation phenomena and unconventional superconductivity.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"70 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing flat bands, localized and itinerant states in TaS2 trilayer heterostructures\",\"authors\":\"Hyeonhu Bae, Roser Valentí, Igor I. Mazin, Binghai Yan\",\"doi\":\"10.1038/s41535-025-00812-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Stacking and twisting van der Waals materials provides a powerful tool to engineer quantum matter. For instance, 1T-TaS<sub>2</sub> monolayers are Mott insulators, whereas layered 1H-TaS<sub>2</sub> is metallic and superconducting; thus, the T/H bilayer, where heavy fermions and unconventional superconducting phases are expected from localized spins (1T) coexisting with itinerant electrons (1H), has been intensively studied. However, recent studies revealed significant charge transfer that questions this scenario. Here, we propose a T/T/H trilayer heterostructure where the T/T bilayer is a flat-dispersion band insulator with localized electrons, whereas the 1H layer remains metallic with a weak spin polarization. Varying the T/T stacking configuration tunes the flat-band filling, enabling a crossover from a doped-Mott regime to a Kondo-like state. Such a trilayer heterostructure provides, therefore, a rich novel platform to study strong correlation phenomena and unconventional superconductivity.</p>\",\"PeriodicalId\":19283,\"journal\":{\"name\":\"npj Quantum Materials\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41535-025-00812-0\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-025-00812-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Designing flat bands, localized and itinerant states in TaS2 trilayer heterostructures
Stacking and twisting van der Waals materials provides a powerful tool to engineer quantum matter. For instance, 1T-TaS2 monolayers are Mott insulators, whereas layered 1H-TaS2 is metallic and superconducting; thus, the T/H bilayer, where heavy fermions and unconventional superconducting phases are expected from localized spins (1T) coexisting with itinerant electrons (1H), has been intensively studied. However, recent studies revealed significant charge transfer that questions this scenario. Here, we propose a T/T/H trilayer heterostructure where the T/T bilayer is a flat-dispersion band insulator with localized electrons, whereas the 1H layer remains metallic with a weak spin polarization. Varying the T/T stacking configuration tunes the flat-band filling, enabling a crossover from a doped-Mott regime to a Kondo-like state. Such a trilayer heterostructure provides, therefore, a rich novel platform to study strong correlation phenomena and unconventional superconductivity.
期刊介绍:
npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.