TaS2三层异质结构的平带、局域和流动态设计

IF 6.2 1区 物理与天体物理 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hyeonhu Bae, Roser Valentí, Igor I. Mazin, Binghai Yan
{"title":"TaS2三层异质结构的平带、局域和流动态设计","authors":"Hyeonhu Bae, Roser Valentí, Igor I. Mazin, Binghai Yan","doi":"10.1038/s41535-025-00812-0","DOIUrl":null,"url":null,"abstract":"<p>Stacking and twisting van der Waals materials provides a powerful tool to engineer quantum matter. For instance, 1T-TaS<sub>2</sub> monolayers are Mott insulators, whereas layered 1H-TaS<sub>2</sub> is metallic and superconducting; thus, the T/H bilayer, where heavy fermions and unconventional superconducting phases are expected from localized spins (1T) coexisting with itinerant electrons (1H), has been intensively studied. However, recent studies revealed significant charge transfer that questions this scenario. Here, we propose a T/T/H trilayer heterostructure where the T/T bilayer is a flat-dispersion band insulator with localized electrons, whereas the 1H layer remains metallic with a weak spin polarization. Varying the T/T stacking configuration tunes the flat-band filling, enabling a crossover from a doped-Mott regime to a Kondo-like state. Such a trilayer heterostructure provides, therefore, a rich novel platform to study strong correlation phenomena and unconventional superconductivity.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"70 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing flat bands, localized and itinerant states in TaS2 trilayer heterostructures\",\"authors\":\"Hyeonhu Bae, Roser Valentí, Igor I. Mazin, Binghai Yan\",\"doi\":\"10.1038/s41535-025-00812-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Stacking and twisting van der Waals materials provides a powerful tool to engineer quantum matter. For instance, 1T-TaS<sub>2</sub> monolayers are Mott insulators, whereas layered 1H-TaS<sub>2</sub> is metallic and superconducting; thus, the T/H bilayer, where heavy fermions and unconventional superconducting phases are expected from localized spins (1T) coexisting with itinerant electrons (1H), has been intensively studied. However, recent studies revealed significant charge transfer that questions this scenario. Here, we propose a T/T/H trilayer heterostructure where the T/T bilayer is a flat-dispersion band insulator with localized electrons, whereas the 1H layer remains metallic with a weak spin polarization. Varying the T/T stacking configuration tunes the flat-band filling, enabling a crossover from a doped-Mott regime to a Kondo-like state. Such a trilayer heterostructure provides, therefore, a rich novel platform to study strong correlation phenomena and unconventional superconductivity.</p>\",\"PeriodicalId\":19283,\"journal\":{\"name\":\"npj Quantum Materials\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41535-025-00812-0\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-025-00812-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

堆叠和扭曲范德华材料提供了一个强大的工具来工程量子物质。例如,1T-TaS2单层是莫特绝缘体,而分层的1H-TaS2是金属和超导的;因此,在T/H双分子层中,重费米子和非常规超导相有望从局域自旋(1T)与流动电子(1H)共存中得到,这已经得到了深入的研究。然而,最近的研究表明,明显的电荷转移对这种情况提出了质疑。在这里,我们提出了一种T/T/H三层异质结构,其中T/T双层是具有局域电子的平色散带绝缘体,而1H层仍然是具有弱自旋极化的金属。改变T/T堆叠配置调谐平带填充,使交叉从掺杂莫特政权到近藤样状态。因此,这种三层异质结构为研究强相关现象和非常规超导性提供了丰富的新平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Designing flat bands, localized and itinerant states in TaS2 trilayer heterostructures

Designing flat bands, localized and itinerant states in TaS2 trilayer heterostructures

Stacking and twisting van der Waals materials provides a powerful tool to engineer quantum matter. For instance, 1T-TaS2 monolayers are Mott insulators, whereas layered 1H-TaS2 is metallic and superconducting; thus, the T/H bilayer, where heavy fermions and unconventional superconducting phases are expected from localized spins (1T) coexisting with itinerant electrons (1H), has been intensively studied. However, recent studies revealed significant charge transfer that questions this scenario. Here, we propose a T/T/H trilayer heterostructure where the T/T bilayer is a flat-dispersion band insulator with localized electrons, whereas the 1H layer remains metallic with a weak spin polarization. Varying the T/T stacking configuration tunes the flat-band filling, enabling a crossover from a doped-Mott regime to a Kondo-like state. Such a trilayer heterostructure provides, therefore, a rich novel platform to study strong correlation phenomena and unconventional superconductivity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Quantum Materials
npj Quantum Materials Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
10.60
自引率
3.50%
发文量
107
审稿时长
6 weeks
期刊介绍: npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信