Barbara D'hont, Kim Calders, Alexandre Antonelli, Thomas Berg, Wout Cherlet, Karun Dayal, Olivia Jayne Fitzpatrick, Leonard Hambrecht, Maurice Leponce, Arko Lucieer, Olivier Pascal, Pasi Raumonen, Hans Verbeeck
{"title":"陆地和冠层激光扫描综合分析大型古树:对单树和生物多样性研究的启示","authors":"Barbara D'hont, Kim Calders, Alexandre Antonelli, Thomas Berg, Wout Cherlet, Karun Dayal, Olivia Jayne Fitzpatrick, Leonard Hambrecht, Maurice Leponce, Arko Lucieer, Olivier Pascal, Pasi Raumonen, Hans Verbeeck","doi":"10.1002/rse2.70021","DOIUrl":null,"url":null,"abstract":"Large old trees provide multiple ecosystem services and contribute disproportionately to forest biomass and biodiversity. Yet their canopies remain among the least‐explored terrestrial habitats, despite their structural influence on key ecological processes such as light interception, moisture regulation, carbon storage and habitat formation. While terrestrial laser scanning (TLS) captures tree structure primarily from the ground, it struggles with occlusion and reduced precision in dense upper canopies, limiting information on fine‐scale branches and canopy vegetation. To address this, we introduce canopy laser scanning (CLS). We lifted a high‐end laser scanner into the canopy of six large, old trees by using scaffolding or climbers. Four trees are in diverse tropical rainforests in Colombia, Brazil and Peru and have large complex crowns with dense foliage. Two ‘giant’ trees stand out in Tasmania's wet, temperate eucalypt forests. Combining canopy and terrestrial scans resulted in a consistent high point cloud quality. The combined point clouds exhibited uniform point densities throughout the entire tree (downsampled to 1 cm), enabling a thorough examination of both the tree structure and its associated vegetation. Quantitative Structure Models (QSMs) showed, on average, a 20% increase (compared to TLS) in estimated branch volume and length, particularly concentrated in the upper crown region. We identified key epiphytic groups for a 5 × 5 × 5 m<jats:sup>3</jats:sup> subset of a tree. Our results show that CLS improves point cloud precision and reduces occlusion, enabling more accurate assessments of tree architecture and canopy biodiversity. Where feasible, this advancement creates new opportunities for 3D modelling of microhabitats, estimating aboveground carbon stocks, monitoring species and studying ecological dynamics.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":"14 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating terrestrial and canopy laser scanning for comprehensive analysis of large old trees: Implications for single tree and biodiversity research\",\"authors\":\"Barbara D'hont, Kim Calders, Alexandre Antonelli, Thomas Berg, Wout Cherlet, Karun Dayal, Olivia Jayne Fitzpatrick, Leonard Hambrecht, Maurice Leponce, Arko Lucieer, Olivier Pascal, Pasi Raumonen, Hans Verbeeck\",\"doi\":\"10.1002/rse2.70021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large old trees provide multiple ecosystem services and contribute disproportionately to forest biomass and biodiversity. Yet their canopies remain among the least‐explored terrestrial habitats, despite their structural influence on key ecological processes such as light interception, moisture regulation, carbon storage and habitat formation. While terrestrial laser scanning (TLS) captures tree structure primarily from the ground, it struggles with occlusion and reduced precision in dense upper canopies, limiting information on fine‐scale branches and canopy vegetation. To address this, we introduce canopy laser scanning (CLS). We lifted a high‐end laser scanner into the canopy of six large, old trees by using scaffolding or climbers. Four trees are in diverse tropical rainforests in Colombia, Brazil and Peru and have large complex crowns with dense foliage. Two ‘giant’ trees stand out in Tasmania's wet, temperate eucalypt forests. Combining canopy and terrestrial scans resulted in a consistent high point cloud quality. The combined point clouds exhibited uniform point densities throughout the entire tree (downsampled to 1 cm), enabling a thorough examination of both the tree structure and its associated vegetation. Quantitative Structure Models (QSMs) showed, on average, a 20% increase (compared to TLS) in estimated branch volume and length, particularly concentrated in the upper crown region. We identified key epiphytic groups for a 5 × 5 × 5 m<jats:sup>3</jats:sup> subset of a tree. Our results show that CLS improves point cloud precision and reduces occlusion, enabling more accurate assessments of tree architecture and canopy biodiversity. Where feasible, this advancement creates new opportunities for 3D modelling of microhabitats, estimating aboveground carbon stocks, monitoring species and studying ecological dynamics.\",\"PeriodicalId\":21132,\"journal\":{\"name\":\"Remote Sensing in Ecology and Conservation\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing in Ecology and Conservation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1002/rse2.70021\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing in Ecology and Conservation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/rse2.70021","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Integrating terrestrial and canopy laser scanning for comprehensive analysis of large old trees: Implications for single tree and biodiversity research
Large old trees provide multiple ecosystem services and contribute disproportionately to forest biomass and biodiversity. Yet their canopies remain among the least‐explored terrestrial habitats, despite their structural influence on key ecological processes such as light interception, moisture regulation, carbon storage and habitat formation. While terrestrial laser scanning (TLS) captures tree structure primarily from the ground, it struggles with occlusion and reduced precision in dense upper canopies, limiting information on fine‐scale branches and canopy vegetation. To address this, we introduce canopy laser scanning (CLS). We lifted a high‐end laser scanner into the canopy of six large, old trees by using scaffolding or climbers. Four trees are in diverse tropical rainforests in Colombia, Brazil and Peru and have large complex crowns with dense foliage. Two ‘giant’ trees stand out in Tasmania's wet, temperate eucalypt forests. Combining canopy and terrestrial scans resulted in a consistent high point cloud quality. The combined point clouds exhibited uniform point densities throughout the entire tree (downsampled to 1 cm), enabling a thorough examination of both the tree structure and its associated vegetation. Quantitative Structure Models (QSMs) showed, on average, a 20% increase (compared to TLS) in estimated branch volume and length, particularly concentrated in the upper crown region. We identified key epiphytic groups for a 5 × 5 × 5 m3 subset of a tree. Our results show that CLS improves point cloud precision and reduces occlusion, enabling more accurate assessments of tree architecture and canopy biodiversity. Where feasible, this advancement creates new opportunities for 3D modelling of microhabitats, estimating aboveground carbon stocks, monitoring species and studying ecological dynamics.
期刊介绍:
emote Sensing in Ecology and Conservation provides a forum for rapid, peer-reviewed publication of novel, multidisciplinary research at the interface between remote sensing science and ecology and conservation. The journal prioritizes findings that advance the scientific basis of ecology and conservation, promoting the development of remote-sensing based methods relevant to the management of land use and biological systems at all levels, from populations and species to ecosystems and biomes. The journal defines remote sensing in its broadest sense, including data acquisition by hand-held and fixed ground-based sensors, such as camera traps and acoustic recorders, and sensors on airplanes and satellites. The intended journal’s audience includes ecologists, conservation scientists, policy makers, managers of terrestrial and aquatic systems, remote sensing scientists, and students.
Remote Sensing in Ecology and Conservation is a fully open access journal from Wiley and the Zoological Society of London. Remote sensing has enormous potential as to provide information on the state of, and pressures on, biological diversity and ecosystem services, at multiple spatial and temporal scales. This new publication provides a forum for multidisciplinary research in remote sensing science, ecological research and conservation science.