Fanglie Wu, Xin Su, Tingting Cheng, Haitong Xu, Bing Wu
{"title":"具有安全航速约束和潮汐高程变化的非线性模型预测控制舰船编队控制","authors":"Fanglie Wu, Xin Su, Tingting Cheng, Haitong Xu, Bing Wu","doi":"10.1049/itr2.70082","DOIUrl":null,"url":null,"abstract":"<p>To improve transportation efficiency, an adaptive speed control method is proposed for ship formation control when a ship formation enters a port with tidal elevation variations. The nonlinear model predictive control (NMPC) method and leader‒follower structure are utilised for the formation keeping and trajectory tracking tasks. The proposed method establishes a ship manoeuvring model and a dynamic speed constraint model for adaptive speed control. A safe distance model is constructed to maintain a safe distance between ship formation members. The proposed safe distance model utilises a Serret‒Frenet (S‒F) coordinate system to describe the positions of ship formation members. Simulation experiments are applied to the North Channel of the Yangtze River. The experimental results indicate that the maximum actual draught accounts for 101.4% of the maximum safe draught without speed constraints. The draft ratio decreases to 99.2% after the adaptive speed control method is applied. This method can be utilised to effectively control ship formation navigation considering variations in tidal elevation.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"19 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.70082","citationCount":"0","resultStr":"{\"title\":\"Ship Formation Control Using Nonlinear Model Predictive Control With Safe Speed Constraints and Tidal Elevation Variations\",\"authors\":\"Fanglie Wu, Xin Su, Tingting Cheng, Haitong Xu, Bing Wu\",\"doi\":\"10.1049/itr2.70082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To improve transportation efficiency, an adaptive speed control method is proposed for ship formation control when a ship formation enters a port with tidal elevation variations. The nonlinear model predictive control (NMPC) method and leader‒follower structure are utilised for the formation keeping and trajectory tracking tasks. The proposed method establishes a ship manoeuvring model and a dynamic speed constraint model for adaptive speed control. A safe distance model is constructed to maintain a safe distance between ship formation members. The proposed safe distance model utilises a Serret‒Frenet (S‒F) coordinate system to describe the positions of ship formation members. Simulation experiments are applied to the North Channel of the Yangtze River. The experimental results indicate that the maximum actual draught accounts for 101.4% of the maximum safe draught without speed constraints. The draft ratio decreases to 99.2% after the adaptive speed control method is applied. This method can be utilised to effectively control ship formation navigation considering variations in tidal elevation.</p>\",\"PeriodicalId\":50381,\"journal\":{\"name\":\"IET Intelligent Transport Systems\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.70082\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Intelligent Transport Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/itr2.70082\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/itr2.70082","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Ship Formation Control Using Nonlinear Model Predictive Control With Safe Speed Constraints and Tidal Elevation Variations
To improve transportation efficiency, an adaptive speed control method is proposed for ship formation control when a ship formation enters a port with tidal elevation variations. The nonlinear model predictive control (NMPC) method and leader‒follower structure are utilised for the formation keeping and trajectory tracking tasks. The proposed method establishes a ship manoeuvring model and a dynamic speed constraint model for adaptive speed control. A safe distance model is constructed to maintain a safe distance between ship formation members. The proposed safe distance model utilises a Serret‒Frenet (S‒F) coordinate system to describe the positions of ship formation members. Simulation experiments are applied to the North Channel of the Yangtze River. The experimental results indicate that the maximum actual draught accounts for 101.4% of the maximum safe draught without speed constraints. The draft ratio decreases to 99.2% after the adaptive speed control method is applied. This method can be utilised to effectively control ship formation navigation considering variations in tidal elevation.
期刊介绍:
IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following:
Sustainable traffic solutions
Deployments with enabling technologies
Pervasive monitoring
Applications; demonstrations and evaluation
Economic and behavioural analyses of ITS services and scenario
Data Integration and analytics
Information collection and processing; image processing applications in ITS
ITS aspects of electric vehicles
Autonomous vehicles; connected vehicle systems;
In-vehicle ITS, safety and vulnerable road user aspects
Mobility as a service systems
Traffic management and control
Public transport systems technologies
Fleet and public transport logistics
Emergency and incident management
Demand management and electronic payment systems
Traffic related air pollution management
Policy and institutional issues
Interoperability, standards and architectures
Funding scenarios
Enforcement
Human machine interaction
Education, training and outreach
Current Special Issue Call for papers:
Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf
Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf
Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf