Andrea D’Urbano, Michael de Oliveira, Luís Soares Barbosa
{"title":"桥接资源理论与量子密钥分配:几何分析与统计检验","authors":"Andrea D’Urbano, Michael de Oliveira, Luís Soares Barbosa","doi":"10.1007/s11128-025-04866-8","DOIUrl":null,"url":null,"abstract":"<div><p>Discerning between quantum and classical correlations is of great importance. Bell polytopes are well established as a fundamental tool for such a purpose. In this paper, we extend this line of inquiry by applying resource theory within the context of network scenarios, to a Quantum Key Distribution (QKD) protocol, BBM92. To achieve this, we consider the causal structure <i>P</i>3 to describe the protocol, and we aim to develop useful statistical tests to assess it. Our objectives are twofold: firstly, to utilise the underlying causal structure of the QKD protocol to produce a geometrical analysis of the resulting nonconvex polytope, with a focus on the classical behaviours, and secondly to devise a test within this framework to evaluate the distance between any two behaviours within the generated polytope. This approach offers a unique perspective, linking deviations from expected behaviour directly to the quality of the quantum resource involved or the residual nonclassicality in protocol execution.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 9","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bridging resource theory and quantum key distribution: geometric analysis and statistical testing\",\"authors\":\"Andrea D’Urbano, Michael de Oliveira, Luís Soares Barbosa\",\"doi\":\"10.1007/s11128-025-04866-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Discerning between quantum and classical correlations is of great importance. Bell polytopes are well established as a fundamental tool for such a purpose. In this paper, we extend this line of inquiry by applying resource theory within the context of network scenarios, to a Quantum Key Distribution (QKD) protocol, BBM92. To achieve this, we consider the causal structure <i>P</i>3 to describe the protocol, and we aim to develop useful statistical tests to assess it. Our objectives are twofold: firstly, to utilise the underlying causal structure of the QKD protocol to produce a geometrical analysis of the resulting nonconvex polytope, with a focus on the classical behaviours, and secondly to devise a test within this framework to evaluate the distance between any two behaviours within the generated polytope. This approach offers a unique perspective, linking deviations from expected behaviour directly to the quality of the quantum resource involved or the residual nonclassicality in protocol execution.</p></div>\",\"PeriodicalId\":746,\"journal\":{\"name\":\"Quantum Information Processing\",\"volume\":\"24 9\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Information Processing\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11128-025-04866-8\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-025-04866-8","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Bridging resource theory and quantum key distribution: geometric analysis and statistical testing
Discerning between quantum and classical correlations is of great importance. Bell polytopes are well established as a fundamental tool for such a purpose. In this paper, we extend this line of inquiry by applying resource theory within the context of network scenarios, to a Quantum Key Distribution (QKD) protocol, BBM92. To achieve this, we consider the causal structure P3 to describe the protocol, and we aim to develop useful statistical tests to assess it. Our objectives are twofold: firstly, to utilise the underlying causal structure of the QKD protocol to produce a geometrical analysis of the resulting nonconvex polytope, with a focus on the classical behaviours, and secondly to devise a test within this framework to evaluate the distance between any two behaviours within the generated polytope. This approach offers a unique perspective, linking deviations from expected behaviour directly to the quality of the quantum resource involved or the residual nonclassicality in protocol execution.
期刊介绍:
Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.