{"title":"基于深度学习和多标准分析的稳健云服务排名","authors":"Pooja Goyal;Sukhvinder Singh Deora","doi":"10.13052/jwe1540-9589.2453","DOIUrl":null,"url":null,"abstract":"With the rapid growth of cloud services, it is crucial to have strong assessment methods in place to rate these services according to their performance, dependability, and security. This study introduces a holistic methodology that utilizes advanced deep learning (DL) algorithms to prioritize and evaluate cloud services. Our model incorporates many assessment criteria, including latency, throughput, availability, and security measures. These criteria are trained using a varied collection of performance measurements from cloud services. We validate the effectiveness of our methodology by comprehensive experiments, attaining greater precision and significance in ranking compared to conventional approaches. The DL model underwent evaluation using a testing set, resulting in a mean absolute error (MAE) of 0.15 in ranking scores. The algorithm regularly achieved superior results compared to conventional ranking approaches, particularly in situations where performance measures varied. Through the incorporation of security metrics, the model successfully assessed and ranked cloud service providers (CSPs) based not only on their performance, but also on their ability to withstand security threats. The DL technique exhibited more flexibility and contextual awareness in its rankings, hence showcasing its superiority in adjusting to real-time data. The research conducted a comparison between DL-based rankings and conventional methodologies and industry standards, demonstrating its superiority in effectively adjusting to real-time data. The study technique entails gathering data from many CSPs to construct a resilient framework for evaluating cloud services using DL models. The data is obtained from publicly available performance statistics, cloud monitoring tools, user evaluations, and problem reports. The collection comprises both structured and unstructured data, including essential performance and accuracy indicators.","PeriodicalId":49952,"journal":{"name":"Journal of Web Engineering","volume":"24 5","pages":"739-772"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11135461","citationCount":"0","resultStr":"{\"title\":\"Robust Cloud Service Ranking with Deep Learning and Multi-Criteria Analysis\",\"authors\":\"Pooja Goyal;Sukhvinder Singh Deora\",\"doi\":\"10.13052/jwe1540-9589.2453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid growth of cloud services, it is crucial to have strong assessment methods in place to rate these services according to their performance, dependability, and security. This study introduces a holistic methodology that utilizes advanced deep learning (DL) algorithms to prioritize and evaluate cloud services. Our model incorporates many assessment criteria, including latency, throughput, availability, and security measures. These criteria are trained using a varied collection of performance measurements from cloud services. We validate the effectiveness of our methodology by comprehensive experiments, attaining greater precision and significance in ranking compared to conventional approaches. The DL model underwent evaluation using a testing set, resulting in a mean absolute error (MAE) of 0.15 in ranking scores. The algorithm regularly achieved superior results compared to conventional ranking approaches, particularly in situations where performance measures varied. Through the incorporation of security metrics, the model successfully assessed and ranked cloud service providers (CSPs) based not only on their performance, but also on their ability to withstand security threats. The DL technique exhibited more flexibility and contextual awareness in its rankings, hence showcasing its superiority in adjusting to real-time data. The research conducted a comparison between DL-based rankings and conventional methodologies and industry standards, demonstrating its superiority in effectively adjusting to real-time data. The study technique entails gathering data from many CSPs to construct a resilient framework for evaluating cloud services using DL models. The data is obtained from publicly available performance statistics, cloud monitoring tools, user evaluations, and problem reports. The collection comprises both structured and unstructured data, including essential performance and accuracy indicators.\",\"PeriodicalId\":49952,\"journal\":{\"name\":\"Journal of Web Engineering\",\"volume\":\"24 5\",\"pages\":\"739-772\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11135461\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Web Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11135461/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Web Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11135461/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Robust Cloud Service Ranking with Deep Learning and Multi-Criteria Analysis
With the rapid growth of cloud services, it is crucial to have strong assessment methods in place to rate these services according to their performance, dependability, and security. This study introduces a holistic methodology that utilizes advanced deep learning (DL) algorithms to prioritize and evaluate cloud services. Our model incorporates many assessment criteria, including latency, throughput, availability, and security measures. These criteria are trained using a varied collection of performance measurements from cloud services. We validate the effectiveness of our methodology by comprehensive experiments, attaining greater precision and significance in ranking compared to conventional approaches. The DL model underwent evaluation using a testing set, resulting in a mean absolute error (MAE) of 0.15 in ranking scores. The algorithm regularly achieved superior results compared to conventional ranking approaches, particularly in situations where performance measures varied. Through the incorporation of security metrics, the model successfully assessed and ranked cloud service providers (CSPs) based not only on their performance, but also on their ability to withstand security threats. The DL technique exhibited more flexibility and contextual awareness in its rankings, hence showcasing its superiority in adjusting to real-time data. The research conducted a comparison between DL-based rankings and conventional methodologies and industry standards, demonstrating its superiority in effectively adjusting to real-time data. The study technique entails gathering data from many CSPs to construct a resilient framework for evaluating cloud services using DL models. The data is obtained from publicly available performance statistics, cloud monitoring tools, user evaluations, and problem reports. The collection comprises both structured and unstructured data, including essential performance and accuracy indicators.
期刊介绍:
The World Wide Web and its associated technologies have become a major implementation and delivery platform for a large variety of applications, ranging from simple institutional information Web sites to sophisticated supply-chain management systems, financial applications, e-government, distance learning, and entertainment, among others. Such applications, in addition to their intrinsic functionality, also exhibit the more complex behavior of distributed applications.