基于任务数据合成的多尺度特征融合肺炎病原体分类

IF 4.2 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yinzhe Cui , Jing Liu , Ze Teng , Shuangfeng Yang , Hongfeng Li , Pingkang Li , Jiabin Lu , Yajuan Gao , Yun Peng , Hongbin Han , Wanyi Fu
{"title":"基于任务数据合成的多尺度特征融合肺炎病原体分类","authors":"Yinzhe Cui ,&nbsp;Jing Liu ,&nbsp;Ze Teng ,&nbsp;Shuangfeng Yang ,&nbsp;Hongfeng Li ,&nbsp;Pingkang Li ,&nbsp;Jiabin Lu ,&nbsp;Yajuan Gao ,&nbsp;Yun Peng ,&nbsp;Hongbin Han ,&nbsp;Wanyi Fu","doi":"10.1016/j.imavis.2025.105662","DOIUrl":null,"url":null,"abstract":"<div><div>Pneumonia pathogen diagnosis from chest X-rays (CXR) is essential for timely and effective treatment for pediatric patients. However, the radiographic manifestations of pediatric pneumonia are often less distinct than those in adults, challenging for pathogen diagnosis, even for experienced clinicians. In this work, we propose a novel framework that integrates an adaptive hierarchical fusion network (AHFF) with task-specific diffusion-based data synthesis for pediatric pneumonia pathogen classification in clinical CXR. AHFF consists of dual branches to extract global and local features, and an adaptive feature fusion module that hierarchically integrates semantic information using cross attention mechanisms. Further, we develop a classifier-guided diffusion model that uses the task-specific AHFF classifier to generate class-consistent chest X-ray images for data augmentation. Experiments on one private and two public datasets demonstrate that the proposed classification model achieves superior performance, with accuracies of 78.00%, 84.43%, and 91.73%, respectively. Diffusion-based augmentation further improves accuracy to 84.37% using the private dataset. These results highlight the potential of feature fusion and data synthesis for improving automated pathogen-specific pneumonia diagnosis in clinical settings.</div></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"162 ","pages":"Article 105662"},"PeriodicalIF":4.2000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-scale feature fusion with task-specific data synthesis for pneumonia pathogen classification\",\"authors\":\"Yinzhe Cui ,&nbsp;Jing Liu ,&nbsp;Ze Teng ,&nbsp;Shuangfeng Yang ,&nbsp;Hongfeng Li ,&nbsp;Pingkang Li ,&nbsp;Jiabin Lu ,&nbsp;Yajuan Gao ,&nbsp;Yun Peng ,&nbsp;Hongbin Han ,&nbsp;Wanyi Fu\",\"doi\":\"10.1016/j.imavis.2025.105662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Pneumonia pathogen diagnosis from chest X-rays (CXR) is essential for timely and effective treatment for pediatric patients. However, the radiographic manifestations of pediatric pneumonia are often less distinct than those in adults, challenging for pathogen diagnosis, even for experienced clinicians. In this work, we propose a novel framework that integrates an adaptive hierarchical fusion network (AHFF) with task-specific diffusion-based data synthesis for pediatric pneumonia pathogen classification in clinical CXR. AHFF consists of dual branches to extract global and local features, and an adaptive feature fusion module that hierarchically integrates semantic information using cross attention mechanisms. Further, we develop a classifier-guided diffusion model that uses the task-specific AHFF classifier to generate class-consistent chest X-ray images for data augmentation. Experiments on one private and two public datasets demonstrate that the proposed classification model achieves superior performance, with accuracies of 78.00%, 84.43%, and 91.73%, respectively. Diffusion-based augmentation further improves accuracy to 84.37% using the private dataset. These results highlight the potential of feature fusion and data synthesis for improving automated pathogen-specific pneumonia diagnosis in clinical settings.</div></div>\",\"PeriodicalId\":50374,\"journal\":{\"name\":\"Image and Vision Computing\",\"volume\":\"162 \",\"pages\":\"Article 105662\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Image and Vision Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0262885625002501\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885625002501","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

通过胸部x光片(CXR)诊断肺炎病原体对于儿科患者的及时有效治疗至关重要。然而,儿童肺炎的影像学表现往往不如成人明显,这对病原体诊断具有挑战性,即使是经验丰富的临床医生。在这项工作中,我们提出了一个新的框架,该框架将自适应分层融合网络(AHFF)与基于任务特异性扩散的数据合成相结合,用于临床CXR中的儿科肺炎病原体分类。AHFF包括提取全局和局部特征的双分支,以及利用交叉注意机制分层集成语义信息的自适应特征融合模块。此外,我们开发了一个分类器引导的扩散模型,该模型使用特定于任务的AHFF分类器来生成类别一致的胸部x射线图像以进行数据增强。在1个私有数据集和2个公共数据集上的实验表明,所提出的分类模型取得了较好的性能,准确率分别为78.00%、84.43%和91.73%。使用私有数据集,基于扩散的增强进一步将准确率提高到84.37%。这些结果突出了特征融合和数据合成在改善临床环境中特异性病原体肺炎自动诊断方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-scale feature fusion with task-specific data synthesis for pneumonia pathogen classification
Pneumonia pathogen diagnosis from chest X-rays (CXR) is essential for timely and effective treatment for pediatric patients. However, the radiographic manifestations of pediatric pneumonia are often less distinct than those in adults, challenging for pathogen diagnosis, even for experienced clinicians. In this work, we propose a novel framework that integrates an adaptive hierarchical fusion network (AHFF) with task-specific diffusion-based data synthesis for pediatric pneumonia pathogen classification in clinical CXR. AHFF consists of dual branches to extract global and local features, and an adaptive feature fusion module that hierarchically integrates semantic information using cross attention mechanisms. Further, we develop a classifier-guided diffusion model that uses the task-specific AHFF classifier to generate class-consistent chest X-ray images for data augmentation. Experiments on one private and two public datasets demonstrate that the proposed classification model achieves superior performance, with accuracies of 78.00%, 84.43%, and 91.73%, respectively. Diffusion-based augmentation further improves accuracy to 84.37% using the private dataset. These results highlight the potential of feature fusion and data synthesis for improving automated pathogen-specific pneumonia diagnosis in clinical settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Image and Vision Computing
Image and Vision Computing 工程技术-工程:电子与电气
CiteScore
8.50
自引率
8.50%
发文量
143
审稿时长
7.8 months
期刊介绍: Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信