自动序列的Cobham二分法的图论证明

IF 0.8 4区 数学 Q3 MATHEMATICS
Mieke Wessel
{"title":"自动序列的Cobham二分法的图论证明","authors":"Mieke Wessel","doi":"10.1016/j.indag.2025.04.001","DOIUrl":null,"url":null,"abstract":"<div><div>We give a new graph-theoretic proof of a theorem of Cobham which says that the support of an automatic sequence is either sparse, that is, grows polylogarithmically, or grows at least like <span><math><msup><mrow><mi>N</mi></mrow><mrow><mi>α</mi></mrow></msup></math></span> for some <span><math><mrow><mi>α</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>. The proof uses the notions of tied vertices and cycle arborescences. With the ideas of the proof we can also give a new interpretation of the rank of a sparse sequence as the height of its cycle arborescence. In the non-sparse case we are able to show that the support has asymptotic behavior of the form <span><math><mrow><msup><mrow><mi>N</mi></mrow><mrow><mi>B</mi></mrow></msup><mo>log</mo><msup><mrow><mrow><mo>(</mo><mi>N</mi><mo>)</mo></mrow></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span>, where <span><math><mi>B</mi></math></span> turns out to be the logarithm of an integer root of a Perron number.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 5","pages":"Pages 1310-1328"},"PeriodicalIF":0.8000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A graph-theoretic proof of Cobham’s Dichotomy for automatic sequences\",\"authors\":\"Mieke Wessel\",\"doi\":\"10.1016/j.indag.2025.04.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We give a new graph-theoretic proof of a theorem of Cobham which says that the support of an automatic sequence is either sparse, that is, grows polylogarithmically, or grows at least like <span><math><msup><mrow><mi>N</mi></mrow><mrow><mi>α</mi></mrow></msup></math></span> for some <span><math><mrow><mi>α</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>. The proof uses the notions of tied vertices and cycle arborescences. With the ideas of the proof we can also give a new interpretation of the rank of a sparse sequence as the height of its cycle arborescence. In the non-sparse case we are able to show that the support has asymptotic behavior of the form <span><math><mrow><msup><mrow><mi>N</mi></mrow><mrow><mi>B</mi></mrow></msup><mo>log</mo><msup><mrow><mrow><mo>(</mo><mi>N</mi><mo>)</mo></mrow></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span>, where <span><math><mi>B</mi></math></span> turns out to be the logarithm of an integer root of a Perron number.</div></div>\",\"PeriodicalId\":56126,\"journal\":{\"name\":\"Indagationes Mathematicae-New Series\",\"volume\":\"36 5\",\"pages\":\"Pages 1310-1328\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae-New Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S001935772500031X\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001935772500031X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们给出了Cobham定理的一个新的图论证明,该定理认为对于某个α>;0,自动序列的支持要么是稀疏的,即多对数增长,要么至少像Nα一样增长。这个证明使用了绑定顶点和循环树的概念。利用证明的思想,我们还可以给出稀疏序列的秩作为其环树冠高度的新解释。在非稀疏情况下,我们能够证明支持具有NBlog(N)r−1形式的渐近行为,其中B被证明是Perron数的整数根的对数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A graph-theoretic proof of Cobham’s Dichotomy for automatic sequences
We give a new graph-theoretic proof of a theorem of Cobham which says that the support of an automatic sequence is either sparse, that is, grows polylogarithmically, or grows at least like Nα for some α>0. The proof uses the notions of tied vertices and cycle arborescences. With the ideas of the proof we can also give a new interpretation of the rank of a sparse sequence as the height of its cycle arborescence. In the non-sparse case we are able to show that the support has asymptotic behavior of the form NBlog(N)r1, where B turns out to be the logarithm of an integer root of a Perron number.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
74
审稿时长
79 days
期刊介绍: Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信