动态地表水分数(DSWF):利用谷歌Earth Engine中Sentinel-2图像在10米空间分辨率下绘制全球地表水分数

IF 8.6 Q1 REMOTE SENSING
Yalan Wang , Giles Foody , Pu Zhou , Yuyang Li , Xiang Li , Yihang Zhang , Yun Du , Xiaodong Li
{"title":"动态地表水分数(DSWF):利用谷歌Earth Engine中Sentinel-2图像在10米空间分辨率下绘制全球地表水分数","authors":"Yalan Wang ,&nbsp;Giles Foody ,&nbsp;Pu Zhou ,&nbsp;Yuyang Li ,&nbsp;Xiang Li ,&nbsp;Yihang Zhang ,&nbsp;Yun Du ,&nbsp;Xiaodong Li","doi":"10.1016/j.jag.2025.104813","DOIUrl":null,"url":null,"abstract":"<div><div>Mapping surface water at high spatiotemporal resolution is critical for managing water resources and mitigating disasters. Current global surface water datasets are typically generated at a relatively coarse monthly temporal resolution and 30-meter spatial resolution. Moreover, the mixed pixel problem further limits their ability to precisely map small water bodies. This study produced the global Dynamic Surface Water Fraction (DSWF) mapping by combining Sentinel-2 imagery and Dynamic World dataset using Google Earth Engine (GEE). Different from the analysis-ready wall-to-wall global datasets, DSWF is generated on-demand online in response to user-defined areas of interest and time. DSWF explored sub-pixel surface water fraction information at 10-meter spatial resolution, enabling the precise representation of fine-scale spatial features of surface water and minimizing the blurring artifacts commonly associated with conventional hard classification. The accuracy of DSWF was evaluated across 113 validation tiles, demonstrating an overall root mean squared error (RMSE) of 0.090 and mean absolute error (MAE) of 0.021 when validated against both pure and mixed pixels. In comparison to the 30-meter Landsat-based global datasets, DSWF provides more accurate spatial distributions of surface water, with particular effectiveness for small ponds and narrow rivers.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"143 ","pages":"Article 104813"},"PeriodicalIF":8.6000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic surface water fraction (DSWF): Global surface water fraction mapping at 10-meter spatial resolution with Sentinel-2 imagery in Google Earth Engine\",\"authors\":\"Yalan Wang ,&nbsp;Giles Foody ,&nbsp;Pu Zhou ,&nbsp;Yuyang Li ,&nbsp;Xiang Li ,&nbsp;Yihang Zhang ,&nbsp;Yun Du ,&nbsp;Xiaodong Li\",\"doi\":\"10.1016/j.jag.2025.104813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Mapping surface water at high spatiotemporal resolution is critical for managing water resources and mitigating disasters. Current global surface water datasets are typically generated at a relatively coarse monthly temporal resolution and 30-meter spatial resolution. Moreover, the mixed pixel problem further limits their ability to precisely map small water bodies. This study produced the global Dynamic Surface Water Fraction (DSWF) mapping by combining Sentinel-2 imagery and Dynamic World dataset using Google Earth Engine (GEE). Different from the analysis-ready wall-to-wall global datasets, DSWF is generated on-demand online in response to user-defined areas of interest and time. DSWF explored sub-pixel surface water fraction information at 10-meter spatial resolution, enabling the precise representation of fine-scale spatial features of surface water and minimizing the blurring artifacts commonly associated with conventional hard classification. The accuracy of DSWF was evaluated across 113 validation tiles, demonstrating an overall root mean squared error (RMSE) of 0.090 and mean absolute error (MAE) of 0.021 when validated against both pure and mixed pixels. In comparison to the 30-meter Landsat-based global datasets, DSWF provides more accurate spatial distributions of surface water, with particular effectiveness for small ponds and narrow rivers.</div></div>\",\"PeriodicalId\":73423,\"journal\":{\"name\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"volume\":\"143 \",\"pages\":\"Article 104813\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569843225004601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843225004601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

摘要

高时空分辨率地表水制图对于水资源管理和减灾至关重要。目前的全球地表水数据集通常以相对粗糙的月时间分辨率和30米空间分辨率生成。此外,混合像素问题进一步限制了它们精确绘制小水体的能力。本研究通过结合Sentinel-2图像和使用谷歌Earth Engine (GEE)的动态世界数据集,生成了全球动态地表水分数(DSWF)地图。与可供分析的全面全局数据集不同,DSWF是根据用户定义的兴趣区域和时间按需在线生成的。DSWF在10米空间分辨率下探索亚像素地表水成分信息,能够精确表示地表水的细尺度空间特征,并最大限度地减少传统硬分类中常见的模糊伪影。在113个验证块中评估了DSWF的准确性,在对纯像素和混合像素进行验证时,总体均方根误差(RMSE)为0.090,平均绝对误差(MAE)为0.021。与基于landsat的30米全球数据集相比,DSWF提供了更准确的地表水空间分布,对小池塘和狭窄河流尤其有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic surface water fraction (DSWF): Global surface water fraction mapping at 10-meter spatial resolution with Sentinel-2 imagery in Google Earth Engine
Mapping surface water at high spatiotemporal resolution is critical for managing water resources and mitigating disasters. Current global surface water datasets are typically generated at a relatively coarse monthly temporal resolution and 30-meter spatial resolution. Moreover, the mixed pixel problem further limits their ability to precisely map small water bodies. This study produced the global Dynamic Surface Water Fraction (DSWF) mapping by combining Sentinel-2 imagery and Dynamic World dataset using Google Earth Engine (GEE). Different from the analysis-ready wall-to-wall global datasets, DSWF is generated on-demand online in response to user-defined areas of interest and time. DSWF explored sub-pixel surface water fraction information at 10-meter spatial resolution, enabling the precise representation of fine-scale spatial features of surface water and minimizing the blurring artifacts commonly associated with conventional hard classification. The accuracy of DSWF was evaluated across 113 validation tiles, demonstrating an overall root mean squared error (RMSE) of 0.090 and mean absolute error (MAE) of 0.021 when validated against both pure and mixed pixels. In comparison to the 30-meter Landsat-based global datasets, DSWF provides more accurate spatial distributions of surface water, with particular effectiveness for small ponds and narrow rivers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International journal of applied earth observation and geoinformation : ITC journal
International journal of applied earth observation and geoinformation : ITC journal Global and Planetary Change, Management, Monitoring, Policy and Law, Earth-Surface Processes, Computers in Earth Sciences
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
77 days
期刊介绍: The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信