太阳诱导荧光检索的模拟框架及其在DESIS和HyPlant中的应用

IF 11.4 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Miguel Pato , Kevin Alonso , Jim Buffat , Stefan Auer , Emiliano Carmona , Stefan Maier , Rupert Müller , Patrick Rademske , Uwe Rascher , Hanno Scharr
{"title":"太阳诱导荧光检索的模拟框架及其在DESIS和HyPlant中的应用","authors":"Miguel Pato ,&nbsp;Kevin Alonso ,&nbsp;Jim Buffat ,&nbsp;Stefan Auer ,&nbsp;Emiliano Carmona ,&nbsp;Stefan Maier ,&nbsp;Rupert Müller ,&nbsp;Patrick Rademske ,&nbsp;Uwe Rascher ,&nbsp;Hanno Scharr","doi":"10.1016/j.rse.2025.114944","DOIUrl":null,"url":null,"abstract":"<div><div>Fluorescence light emitted by chlorophyll in plants is a direct probe of the photosynthetic process and can be used to continuously monitor vegetation status. Retrieving solar-induced fluorescence (SIF) using a machine learning (ML) approach promises to take full advantage of airborne and satellite-based instruments to map expected vegetation function over wide areas on a regular basis. This work takes a first step towards developing a ML-based SIF retrieval method. A general-purpose framework for the simulation of at-sensor radiances is introduced and applied to the case of SIF retrieval in the oxygen absorption band O<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-A with the spaceborne DESIS and airborne HyPlant spectrometers. The sensor characteristics are modelled carefully based on calibration and in-flight data and can be extended to other instruments including the upcoming FLEX mission. A comprehensive dataset of simulated at-sensor radiance spectra is then assembled encompassing the most important atmosphere, geometry, surface and sensor properties. The simulated dataset is employed to train emulators capable of generating at-sensor radiances with sub-percent errors in tens of <span><math><mrow><mi>μ</mi><mi>s</mi></mrow></math></span>, opening the way for their routine use in SIF retrieval. The simulated spectra are shown to closely reproduce real data acquired by DESIS and HyPlant and can ultimately be used to develop a robust ML-based SIF retrieval scheme for these and other remote sensing spectrometers. Finally, the SIF retrieval performance of the 3FLD method is quantitatively assessed for different on- and off-band configurations in order to identify the best band combinations. This highlights how our simulation framework enables the optimization of SIF retrieval methods to achieve the best possible performance for a given instrument.</div></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"330 ","pages":"Article 114944"},"PeriodicalIF":11.4000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation framework for solar-induced fluorescence retrieval and application to DESIS and HyPlant\",\"authors\":\"Miguel Pato ,&nbsp;Kevin Alonso ,&nbsp;Jim Buffat ,&nbsp;Stefan Auer ,&nbsp;Emiliano Carmona ,&nbsp;Stefan Maier ,&nbsp;Rupert Müller ,&nbsp;Patrick Rademske ,&nbsp;Uwe Rascher ,&nbsp;Hanno Scharr\",\"doi\":\"10.1016/j.rse.2025.114944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Fluorescence light emitted by chlorophyll in plants is a direct probe of the photosynthetic process and can be used to continuously monitor vegetation status. Retrieving solar-induced fluorescence (SIF) using a machine learning (ML) approach promises to take full advantage of airborne and satellite-based instruments to map expected vegetation function over wide areas on a regular basis. This work takes a first step towards developing a ML-based SIF retrieval method. A general-purpose framework for the simulation of at-sensor radiances is introduced and applied to the case of SIF retrieval in the oxygen absorption band O<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-A with the spaceborne DESIS and airborne HyPlant spectrometers. The sensor characteristics are modelled carefully based on calibration and in-flight data and can be extended to other instruments including the upcoming FLEX mission. A comprehensive dataset of simulated at-sensor radiance spectra is then assembled encompassing the most important atmosphere, geometry, surface and sensor properties. The simulated dataset is employed to train emulators capable of generating at-sensor radiances with sub-percent errors in tens of <span><math><mrow><mi>μ</mi><mi>s</mi></mrow></math></span>, opening the way for their routine use in SIF retrieval. The simulated spectra are shown to closely reproduce real data acquired by DESIS and HyPlant and can ultimately be used to develop a robust ML-based SIF retrieval scheme for these and other remote sensing spectrometers. Finally, the SIF retrieval performance of the 3FLD method is quantitatively assessed for different on- and off-band configurations in order to identify the best band combinations. This highlights how our simulation framework enables the optimization of SIF retrieval methods to achieve the best possible performance for a given instrument.</div></div>\",\"PeriodicalId\":417,\"journal\":{\"name\":\"Remote Sensing of Environment\",\"volume\":\"330 \",\"pages\":\"Article 114944\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing of Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0034425725003487\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425725003487","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

叶绿素发出的荧光是植物光合过程的直接探针,可用于连续监测植被状态。使用机器学习(ML)方法检索太阳诱导荧光(SIF)有望充分利用机载和卫星仪器,定期在大范围内绘制预期的植被功能。这项工作为开发基于ml的SIF检索方法迈出了第一步。介绍了一种用于模拟红外传感器辐射的通用框架,并将其应用于星载DESIS和机载HyPlant光谱仪在氧吸收波段O2-A中检索SIF的情况。传感器的特性是根据校准和飞行数据仔细建模的,可以扩展到其他仪器,包括即将到来的FLEX任务。然后组装一个模拟at-sensor辐射光谱的综合数据集,包括最重要的大气、几何、表面和传感器特性。利用模拟数据集训练仿真器,生成误差在几十μs以下的at-sensor辐射值,为其在SIF检索中的常规应用开辟了道路。模拟光谱与DESIS和HyPlant获取的真实数据非常接近,最终可用于为这些和其他遥感光谱仪开发强大的基于ml的SIF检索方案。最后,定量评估了3FLD方法在不同带上和带外配置下的SIF检索性能,以确定最佳的带组合。这突出了我们的模拟框架如何优化SIF检索方法,以实现给定仪器的最佳性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation framework for solar-induced fluorescence retrieval and application to DESIS and HyPlant
Fluorescence light emitted by chlorophyll in plants is a direct probe of the photosynthetic process and can be used to continuously monitor vegetation status. Retrieving solar-induced fluorescence (SIF) using a machine learning (ML) approach promises to take full advantage of airborne and satellite-based instruments to map expected vegetation function over wide areas on a regular basis. This work takes a first step towards developing a ML-based SIF retrieval method. A general-purpose framework for the simulation of at-sensor radiances is introduced and applied to the case of SIF retrieval in the oxygen absorption band O2-A with the spaceborne DESIS and airborne HyPlant spectrometers. The sensor characteristics are modelled carefully based on calibration and in-flight data and can be extended to other instruments including the upcoming FLEX mission. A comprehensive dataset of simulated at-sensor radiance spectra is then assembled encompassing the most important atmosphere, geometry, surface and sensor properties. The simulated dataset is employed to train emulators capable of generating at-sensor radiances with sub-percent errors in tens of μs, opening the way for their routine use in SIF retrieval. The simulated spectra are shown to closely reproduce real data acquired by DESIS and HyPlant and can ultimately be used to develop a robust ML-based SIF retrieval scheme for these and other remote sensing spectrometers. Finally, the SIF retrieval performance of the 3FLD method is quantitatively assessed for different on- and off-band configurations in order to identify the best band combinations. This highlights how our simulation framework enables the optimization of SIF retrieval methods to achieve the best possible performance for a given instrument.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Remote Sensing of Environment
Remote Sensing of Environment 环境科学-成像科学与照相技术
CiteScore
25.10
自引率
8.90%
发文量
455
审稿时长
53 days
期刊介绍: Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing. The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques. RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信