分布式资源分配的差分私有对偶梯度跟踪

IF 5.9 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Wei Huo , Xiaomeng Chen , Lingying Huang , Karl Henrik Johansson , Ling Shi
{"title":"分布式资源分配的差分私有对偶梯度跟踪","authors":"Wei Huo ,&nbsp;Xiaomeng Chen ,&nbsp;Lingying Huang ,&nbsp;Karl Henrik Johansson ,&nbsp;Ling Shi","doi":"10.1016/j.automatica.2025.112521","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates privacy issues in distributed resource allocation over directed networks, where each agent holds a private cost function and optimizes its decision subject to a global coupling constraint through local interaction with other agents. Conventional methods for resource allocation over directed networks require all agents to transmit their original data to neighbors, which poses the risk of disclosing sensitive and private information. To address this issue, we propose an algorithm called differentially private dual gradient tracking (DP-DGT) for distributed resource allocation, which obfuscates the exchanged messages using independent Laplacian noise. Our algorithm ensures that the agents’ decisions converge to a neighborhood of the optimal solution almost surely. Furthermore, without the assumption of bounded gradients, we prove that the cumulative differential privacy loss under the proposed algorithm is finite even when the number of iterations goes to infinity. To the best of our knowledge, we are the first to simultaneously achieve these two goals in distributed resource allocation problems over directed networks. Finally, numerical simulations on economic dispatch problems within the IEEE 14-bus system illustrate the effectiveness of our proposed algorithm.</div></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":"182 ","pages":"Article 112521"},"PeriodicalIF":5.9000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differentially private dual gradient tracking for distributed resource allocation\",\"authors\":\"Wei Huo ,&nbsp;Xiaomeng Chen ,&nbsp;Lingying Huang ,&nbsp;Karl Henrik Johansson ,&nbsp;Ling Shi\",\"doi\":\"10.1016/j.automatica.2025.112521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates privacy issues in distributed resource allocation over directed networks, where each agent holds a private cost function and optimizes its decision subject to a global coupling constraint through local interaction with other agents. Conventional methods for resource allocation over directed networks require all agents to transmit their original data to neighbors, which poses the risk of disclosing sensitive and private information. To address this issue, we propose an algorithm called differentially private dual gradient tracking (DP-DGT) for distributed resource allocation, which obfuscates the exchanged messages using independent Laplacian noise. Our algorithm ensures that the agents’ decisions converge to a neighborhood of the optimal solution almost surely. Furthermore, without the assumption of bounded gradients, we prove that the cumulative differential privacy loss under the proposed algorithm is finite even when the number of iterations goes to infinity. To the best of our knowledge, we are the first to simultaneously achieve these two goals in distributed resource allocation problems over directed networks. Finally, numerical simulations on economic dispatch problems within the IEEE 14-bus system illustrate the effectiveness of our proposed algorithm.</div></div>\",\"PeriodicalId\":55413,\"journal\":{\"name\":\"Automatica\",\"volume\":\"182 \",\"pages\":\"Article 112521\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automatica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0005109825004169\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatica","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005109825004169","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了有向网络中分布式资源分配中的隐私问题,其中每个智能体拥有一个私有成本函数,并通过与其他智能体的局部交互,在全局耦合约束下优化其决策。传统的有向网络资源分配方法要求所有代理将原始数据传输给相邻代理,这存在泄露敏感和私有信息的风险。为了解决这个问题,我们提出了一种用于分布式资源分配的差分私有对偶梯度跟踪(DP-DGT)算法,该算法使用独立的拉普拉斯噪声来混淆交换的消息。我们的算法保证了智能体的决策几乎肯定地收敛到最优解的一个邻域。此外,在不假设梯度有界的情况下,我们证明了当迭代次数趋于无穷时,该算法的累积微分隐私损失是有限的。据我们所知,我们是第一个在有向网络上的分布式资源分配问题中同时实现这两个目标的人。最后,对IEEE 14总线系统的经济调度问题进行了数值仿真,验证了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differentially private dual gradient tracking for distributed resource allocation
This paper investigates privacy issues in distributed resource allocation over directed networks, where each agent holds a private cost function and optimizes its decision subject to a global coupling constraint through local interaction with other agents. Conventional methods for resource allocation over directed networks require all agents to transmit their original data to neighbors, which poses the risk of disclosing sensitive and private information. To address this issue, we propose an algorithm called differentially private dual gradient tracking (DP-DGT) for distributed resource allocation, which obfuscates the exchanged messages using independent Laplacian noise. Our algorithm ensures that the agents’ decisions converge to a neighborhood of the optimal solution almost surely. Furthermore, without the assumption of bounded gradients, we prove that the cumulative differential privacy loss under the proposed algorithm is finite even when the number of iterations goes to infinity. To the best of our knowledge, we are the first to simultaneously achieve these two goals in distributed resource allocation problems over directed networks. Finally, numerical simulations on economic dispatch problems within the IEEE 14-bus system illustrate the effectiveness of our proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Automatica
Automatica 工程技术-工程:电子与电气
CiteScore
10.70
自引率
7.80%
发文量
617
审稿时长
5 months
期刊介绍: Automatica is a leading archival publication in the field of systems and control. The field encompasses today a broad set of areas and topics, and is thriving not only within itself but also in terms of its impact on other fields, such as communications, computers, biology, energy and economics. Since its inception in 1963, Automatica has kept abreast with the evolution of the field over the years, and has emerged as a leading publication driving the trends in the field. After being founded in 1963, Automatica became a journal of the International Federation of Automatic Control (IFAC) in 1969. It features a characteristic blend of theoretical and applied papers of archival, lasting value, reporting cutting edge research results by authors across the globe. It features articles in distinct categories, including regular, brief and survey papers, technical communiqués, correspondence items, as well as reviews on published books of interest to the readership. It occasionally publishes special issues on emerging new topics or established mature topics of interest to a broad audience. Automatica solicits original high-quality contributions in all the categories listed above, and in all areas of systems and control interpreted in a broad sense and evolving constantly. They may be submitted directly to a subject editor or to the Editor-in-Chief if not sure about the subject area. Editorial procedures in place assure careful, fair, and prompt handling of all submitted articles. Accepted papers appear in the journal in the shortest time feasible given production time constraints.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信