Wei Huo , Xiaomeng Chen , Lingying Huang , Karl Henrik Johansson , Ling Shi
{"title":"分布式资源分配的差分私有对偶梯度跟踪","authors":"Wei Huo , Xiaomeng Chen , Lingying Huang , Karl Henrik Johansson , Ling Shi","doi":"10.1016/j.automatica.2025.112521","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates privacy issues in distributed resource allocation over directed networks, where each agent holds a private cost function and optimizes its decision subject to a global coupling constraint through local interaction with other agents. Conventional methods for resource allocation over directed networks require all agents to transmit their original data to neighbors, which poses the risk of disclosing sensitive and private information. To address this issue, we propose an algorithm called differentially private dual gradient tracking (DP-DGT) for distributed resource allocation, which obfuscates the exchanged messages using independent Laplacian noise. Our algorithm ensures that the agents’ decisions converge to a neighborhood of the optimal solution almost surely. Furthermore, without the assumption of bounded gradients, we prove that the cumulative differential privacy loss under the proposed algorithm is finite even when the number of iterations goes to infinity. To the best of our knowledge, we are the first to simultaneously achieve these two goals in distributed resource allocation problems over directed networks. Finally, numerical simulations on economic dispatch problems within the IEEE 14-bus system illustrate the effectiveness of our proposed algorithm.</div></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":"182 ","pages":"Article 112521"},"PeriodicalIF":5.9000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differentially private dual gradient tracking for distributed resource allocation\",\"authors\":\"Wei Huo , Xiaomeng Chen , Lingying Huang , Karl Henrik Johansson , Ling Shi\",\"doi\":\"10.1016/j.automatica.2025.112521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates privacy issues in distributed resource allocation over directed networks, where each agent holds a private cost function and optimizes its decision subject to a global coupling constraint through local interaction with other agents. Conventional methods for resource allocation over directed networks require all agents to transmit their original data to neighbors, which poses the risk of disclosing sensitive and private information. To address this issue, we propose an algorithm called differentially private dual gradient tracking (DP-DGT) for distributed resource allocation, which obfuscates the exchanged messages using independent Laplacian noise. Our algorithm ensures that the agents’ decisions converge to a neighborhood of the optimal solution almost surely. Furthermore, without the assumption of bounded gradients, we prove that the cumulative differential privacy loss under the proposed algorithm is finite even when the number of iterations goes to infinity. To the best of our knowledge, we are the first to simultaneously achieve these two goals in distributed resource allocation problems over directed networks. Finally, numerical simulations on economic dispatch problems within the IEEE 14-bus system illustrate the effectiveness of our proposed algorithm.</div></div>\",\"PeriodicalId\":55413,\"journal\":{\"name\":\"Automatica\",\"volume\":\"182 \",\"pages\":\"Article 112521\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automatica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0005109825004169\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatica","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005109825004169","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Differentially private dual gradient tracking for distributed resource allocation
This paper investigates privacy issues in distributed resource allocation over directed networks, where each agent holds a private cost function and optimizes its decision subject to a global coupling constraint through local interaction with other agents. Conventional methods for resource allocation over directed networks require all agents to transmit their original data to neighbors, which poses the risk of disclosing sensitive and private information. To address this issue, we propose an algorithm called differentially private dual gradient tracking (DP-DGT) for distributed resource allocation, which obfuscates the exchanged messages using independent Laplacian noise. Our algorithm ensures that the agents’ decisions converge to a neighborhood of the optimal solution almost surely. Furthermore, without the assumption of bounded gradients, we prove that the cumulative differential privacy loss under the proposed algorithm is finite even when the number of iterations goes to infinity. To the best of our knowledge, we are the first to simultaneously achieve these two goals in distributed resource allocation problems over directed networks. Finally, numerical simulations on economic dispatch problems within the IEEE 14-bus system illustrate the effectiveness of our proposed algorithm.
期刊介绍:
Automatica is a leading archival publication in the field of systems and control. The field encompasses today a broad set of areas and topics, and is thriving not only within itself but also in terms of its impact on other fields, such as communications, computers, biology, energy and economics. Since its inception in 1963, Automatica has kept abreast with the evolution of the field over the years, and has emerged as a leading publication driving the trends in the field.
After being founded in 1963, Automatica became a journal of the International Federation of Automatic Control (IFAC) in 1969. It features a characteristic blend of theoretical and applied papers of archival, lasting value, reporting cutting edge research results by authors across the globe. It features articles in distinct categories, including regular, brief and survey papers, technical communiqués, correspondence items, as well as reviews on published books of interest to the readership. It occasionally publishes special issues on emerging new topics or established mature topics of interest to a broad audience.
Automatica solicits original high-quality contributions in all the categories listed above, and in all areas of systems and control interpreted in a broad sense and evolving constantly. They may be submitted directly to a subject editor or to the Editor-in-Chief if not sure about the subject area. Editorial procedures in place assure careful, fair, and prompt handling of all submitted articles. Accepted papers appear in the journal in the shortest time feasible given production time constraints.