{"title":"关于m-修正共形向量场的平凡性","authors":"Rahul Poddar , Ramesh Sharma","doi":"10.1016/j.indag.2025.05.009","DOIUrl":null,"url":null,"abstract":"<div><div>We prove that a compact Riemannian manifold <span><math><mi>M</mi></math></span> does not admit any non-trivial <span><math><mi>m</mi></math></span>-modified homothetic vector fields. In the corresponding case of an <span><math><mi>m</mi></math></span>-modified conformal vector field <span><math><mi>V</mi></math></span>, we establish an inequality that implies the triviality of <span><math><mi>V</mi></math></span>. Further, we demonstrate that an affine Killing <span><math><mi>m</mi></math></span>-modified conformal vector field on a non-compact Riemannian manifold <span><math><mi>M</mi></math></span> must be trivial. Finally, we show that an <span><math><mi>m</mi></math></span>-modified gradient conformal vector field is trivial under the assumptions of polynomial volume growth and convergence to zero at infinity.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 5","pages":"Pages 1481-1490"},"PeriodicalIF":0.8000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the triviality of m-modified conformal vector fields\",\"authors\":\"Rahul Poddar , Ramesh Sharma\",\"doi\":\"10.1016/j.indag.2025.05.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We prove that a compact Riemannian manifold <span><math><mi>M</mi></math></span> does not admit any non-trivial <span><math><mi>m</mi></math></span>-modified homothetic vector fields. In the corresponding case of an <span><math><mi>m</mi></math></span>-modified conformal vector field <span><math><mi>V</mi></math></span>, we establish an inequality that implies the triviality of <span><math><mi>V</mi></math></span>. Further, we demonstrate that an affine Killing <span><math><mi>m</mi></math></span>-modified conformal vector field on a non-compact Riemannian manifold <span><math><mi>M</mi></math></span> must be trivial. Finally, we show that an <span><math><mi>m</mi></math></span>-modified gradient conformal vector field is trivial under the assumptions of polynomial volume growth and convergence to zero at infinity.</div></div>\",\"PeriodicalId\":56126,\"journal\":{\"name\":\"Indagationes Mathematicae-New Series\",\"volume\":\"36 5\",\"pages\":\"Pages 1481-1490\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae-New Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019357725000527\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357725000527","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the triviality of m-modified conformal vector fields
We prove that a compact Riemannian manifold does not admit any non-trivial -modified homothetic vector fields. In the corresponding case of an -modified conformal vector field , we establish an inequality that implies the triviality of . Further, we demonstrate that an affine Killing -modified conformal vector field on a non-compact Riemannian manifold must be trivial. Finally, we show that an -modified gradient conformal vector field is trivial under the assumptions of polynomial volume growth and convergence to zero at infinity.
期刊介绍:
Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.