狄利克雷l函数的简单零点的Linnik-Sprindžuk定理的一个变体

IF 0.8 4区 数学 Q3 MATHEMATICS
William D. Banks
{"title":"狄利克雷l函数的简单零点的Linnik-Sprindžuk定理的一个变体","authors":"William D. Banks","doi":"10.1016/j.indag.2025.05.007","DOIUrl":null,"url":null,"abstract":"<div><div>For a primitive Dirichlet character <span><math><mi>X</mi></math></span>, a new hypothesis <span><math><mrow><msubsup><mrow><mi>RH</mi></mrow><mrow><mi>sim</mi></mrow><mrow><mi>†</mi></mrow></msubsup><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow></mrow></math></span> is introduced, which asserts that (1) all <em>simple</em> zeros of <span><math><mrow><mi>L</mi><mrow><mo>(</mo><mi>s</mi><mo>,</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span> in the critical strip are located on the critical line, and (2) these zeros satisfy some specific conditions on their vertical distribution. We show that <span><math><mrow><msubsup><mrow><mi>RH</mi></mrow><mrow><mi>sim</mi></mrow><mrow><mi>†</mi></mrow></msubsup><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow></mrow></math></span> (for any <span><math><mi>X</mi></math></span>) follows from the <em>generalized Riemann hypothesis</em>.</div><div>Assuming only the <em>generalized Lindelöf hypothesis</em>, we show that if <span><math><mrow><msubsup><mrow><mi>RH</mi></mrow><mrow><mi>sim</mi></mrow><mrow><mi>†</mi></mrow></msubsup><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow></mrow></math></span><span> holds for one primitive character </span><span><math><mi>X</mi></math></span>, then it holds for <em>every</em> such <span><math><mi>X</mi></math></span>. If this occurs, then for every character <span><math><mi>χ</mi></math></span> (primitive or not), all simple zeros of <span><math><mrow><mi>L</mi><mrow><mo>(</mo><mi>s</mi><mo>,</mo><mi>χ</mi><mo>)</mo></mrow></mrow></math></span> in the critical strip are located on the critical line. In particular, Siegel zeros cannot exist in this situation.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 5","pages":"Pages 1459-1475"},"PeriodicalIF":0.8000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A variant of the Linnik–Sprindžuk theorem for simple zeros of Dirichlet L-functions\",\"authors\":\"William D. Banks\",\"doi\":\"10.1016/j.indag.2025.05.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For a primitive Dirichlet character <span><math><mi>X</mi></math></span>, a new hypothesis <span><math><mrow><msubsup><mrow><mi>RH</mi></mrow><mrow><mi>sim</mi></mrow><mrow><mi>†</mi></mrow></msubsup><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow></mrow></math></span> is introduced, which asserts that (1) all <em>simple</em> zeros of <span><math><mrow><mi>L</mi><mrow><mo>(</mo><mi>s</mi><mo>,</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span> in the critical strip are located on the critical line, and (2) these zeros satisfy some specific conditions on their vertical distribution. We show that <span><math><mrow><msubsup><mrow><mi>RH</mi></mrow><mrow><mi>sim</mi></mrow><mrow><mi>†</mi></mrow></msubsup><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow></mrow></math></span> (for any <span><math><mi>X</mi></math></span>) follows from the <em>generalized Riemann hypothesis</em>.</div><div>Assuming only the <em>generalized Lindelöf hypothesis</em>, we show that if <span><math><mrow><msubsup><mrow><mi>RH</mi></mrow><mrow><mi>sim</mi></mrow><mrow><mi>†</mi></mrow></msubsup><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow></mrow></math></span><span> holds for one primitive character </span><span><math><mi>X</mi></math></span>, then it holds for <em>every</em> such <span><math><mi>X</mi></math></span>. If this occurs, then for every character <span><math><mi>χ</mi></math></span> (primitive or not), all simple zeros of <span><math><mrow><mi>L</mi><mrow><mo>(</mo><mi>s</mi><mo>,</mo><mi>χ</mi><mo>)</mo></mrow></mrow></math></span> in the critical strip are located on the critical line. In particular, Siegel zeros cannot exist in this situation.</div></div>\",\"PeriodicalId\":56126,\"journal\":{\"name\":\"Indagationes Mathematicae-New Series\",\"volume\":\"36 5\",\"pages\":\"Pages 1459-1475\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae-New Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019357725000503\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357725000503","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于原始Dirichlet字符X,引入了一个新的假设rsim†[X],该假设断言(1)临界带上L(s,X)的所有简单零都位于临界线上,(2)这些零在垂直分布上满足某些特定条件。我们证明了rsim†[X](对于任何X)都遵循广义黎曼假设。仅假设广义Lindelöf假设,我们表明,如果RHsim†[X]对一个原始字符X成立,那么它对每个这样的X都成立。如果发生这种情况,那么对于每个字符χ(原始或非原始),临界带中L(s,χ)的所有简单零都位于临界线上。特别是,在这种情况下,西格尔零不可能存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A variant of the Linnik–Sprindžuk theorem for simple zeros of Dirichlet L-functions
For a primitive Dirichlet character X, a new hypothesis RHsim[X] is introduced, which asserts that (1) all simple zeros of L(s,X) in the critical strip are located on the critical line, and (2) these zeros satisfy some specific conditions on their vertical distribution. We show that RHsim[X] (for any X) follows from the generalized Riemann hypothesis.
Assuming only the generalized Lindelöf hypothesis, we show that if RHsim[X] holds for one primitive character X, then it holds for every such X. If this occurs, then for every character χ (primitive or not), all simple zeros of L(s,χ) in the critical strip are located on the critical line. In particular, Siegel zeros cannot exist in this situation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
74
审稿时长
79 days
期刊介绍: Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信