{"title":"狄利克雷l函数的简单零点的Linnik-Sprindžuk定理的一个变体","authors":"William D. Banks","doi":"10.1016/j.indag.2025.05.007","DOIUrl":null,"url":null,"abstract":"<div><div>For a primitive Dirichlet character <span><math><mi>X</mi></math></span>, a new hypothesis <span><math><mrow><msubsup><mrow><mi>RH</mi></mrow><mrow><mi>sim</mi></mrow><mrow><mi>†</mi></mrow></msubsup><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow></mrow></math></span> is introduced, which asserts that (1) all <em>simple</em> zeros of <span><math><mrow><mi>L</mi><mrow><mo>(</mo><mi>s</mi><mo>,</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span> in the critical strip are located on the critical line, and (2) these zeros satisfy some specific conditions on their vertical distribution. We show that <span><math><mrow><msubsup><mrow><mi>RH</mi></mrow><mrow><mi>sim</mi></mrow><mrow><mi>†</mi></mrow></msubsup><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow></mrow></math></span> (for any <span><math><mi>X</mi></math></span>) follows from the <em>generalized Riemann hypothesis</em>.</div><div>Assuming only the <em>generalized Lindelöf hypothesis</em>, we show that if <span><math><mrow><msubsup><mrow><mi>RH</mi></mrow><mrow><mi>sim</mi></mrow><mrow><mi>†</mi></mrow></msubsup><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow></mrow></math></span><span> holds for one primitive character </span><span><math><mi>X</mi></math></span>, then it holds for <em>every</em> such <span><math><mi>X</mi></math></span>. If this occurs, then for every character <span><math><mi>χ</mi></math></span> (primitive or not), all simple zeros of <span><math><mrow><mi>L</mi><mrow><mo>(</mo><mi>s</mi><mo>,</mo><mi>χ</mi><mo>)</mo></mrow></mrow></math></span> in the critical strip are located on the critical line. In particular, Siegel zeros cannot exist in this situation.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 5","pages":"Pages 1459-1475"},"PeriodicalIF":0.8000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A variant of the Linnik–Sprindžuk theorem for simple zeros of Dirichlet L-functions\",\"authors\":\"William D. Banks\",\"doi\":\"10.1016/j.indag.2025.05.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For a primitive Dirichlet character <span><math><mi>X</mi></math></span>, a new hypothesis <span><math><mrow><msubsup><mrow><mi>RH</mi></mrow><mrow><mi>sim</mi></mrow><mrow><mi>†</mi></mrow></msubsup><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow></mrow></math></span> is introduced, which asserts that (1) all <em>simple</em> zeros of <span><math><mrow><mi>L</mi><mrow><mo>(</mo><mi>s</mi><mo>,</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span> in the critical strip are located on the critical line, and (2) these zeros satisfy some specific conditions on their vertical distribution. We show that <span><math><mrow><msubsup><mrow><mi>RH</mi></mrow><mrow><mi>sim</mi></mrow><mrow><mi>†</mi></mrow></msubsup><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow></mrow></math></span> (for any <span><math><mi>X</mi></math></span>) follows from the <em>generalized Riemann hypothesis</em>.</div><div>Assuming only the <em>generalized Lindelöf hypothesis</em>, we show that if <span><math><mrow><msubsup><mrow><mi>RH</mi></mrow><mrow><mi>sim</mi></mrow><mrow><mi>†</mi></mrow></msubsup><mrow><mo>[</mo><mi>X</mi><mo>]</mo></mrow></mrow></math></span><span> holds for one primitive character </span><span><math><mi>X</mi></math></span>, then it holds for <em>every</em> such <span><math><mi>X</mi></math></span>. If this occurs, then for every character <span><math><mi>χ</mi></math></span> (primitive or not), all simple zeros of <span><math><mrow><mi>L</mi><mrow><mo>(</mo><mi>s</mi><mo>,</mo><mi>χ</mi><mo>)</mo></mrow></mrow></math></span> in the critical strip are located on the critical line. In particular, Siegel zeros cannot exist in this situation.</div></div>\",\"PeriodicalId\":56126,\"journal\":{\"name\":\"Indagationes Mathematicae-New Series\",\"volume\":\"36 5\",\"pages\":\"Pages 1459-1475\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae-New Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019357725000503\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357725000503","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
A variant of the Linnik–Sprindžuk theorem for simple zeros of Dirichlet L-functions
For a primitive Dirichlet character , a new hypothesis is introduced, which asserts that (1) all simple zeros of in the critical strip are located on the critical line, and (2) these zeros satisfy some specific conditions on their vertical distribution. We show that (for any ) follows from the generalized Riemann hypothesis.
Assuming only the generalized Lindelöf hypothesis, we show that if holds for one primitive character , then it holds for every such . If this occurs, then for every character (primitive or not), all simple zeros of in the critical strip are located on the critical line. In particular, Siegel zeros cannot exist in this situation.
期刊介绍:
Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.