{"title":"注意一个包含除数函数的和","authors":"Liuying Wu","doi":"10.1016/j.indag.2025.05.006","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mrow><mi>d</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> be the divisor function and denote by <span><math><mrow><mo>[</mo><mi>t</mi><mo>]</mo></mrow></math></span> the integral part of the real number <span><math><mi>t</mi></math></span>. In this paper, we prove that <span><math><mrow><munder><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>≤</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>1</mn><mo>/</mo><mi>c</mi></mrow></msup></mrow></munder><mi>d</mi><mfenced><mrow><mfenced><mrow><mfrac><mrow><mi>x</mi></mrow><mrow><msup><mrow><mi>n</mi></mrow><mrow><mi>c</mi></mrow></msup></mrow></mfrac></mrow></mfenced></mrow></mfenced><mo>=</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>c</mi></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mn>1</mn><mo>/</mo><mi>c</mi></mrow></msup><mo>+</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>ɛ</mi><mo>,</mo><mi>c</mi></mrow></msub><mfenced><mrow><msup><mrow><mi>x</mi></mrow><mrow><mo>max</mo><mrow><mo>{</mo><mrow><mo>(</mo><mn>2</mn><mi>c</mi><mo>+</mo><mn>2</mn><mo>)</mo></mrow><mo>/</mo><mrow><mo>(</mo><mn>2</mn><msup><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>5</mn><mi>c</mi><mo>+</mo><mn>2</mn><mo>)</mo></mrow><mo>,</mo><mn>5</mn><mo>/</mo><mrow><mo>(</mo><mn>5</mn><mi>c</mi><mo>+</mo><mn>6</mn><mo>)</mo></mrow><mo>}</mo></mrow><mo>+</mo><mi>ɛ</mi></mrow></msup></mrow></mfenced><mo>,</mo></mrow></math></span> where <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>k</mi><mo>≥</mo><mn>1</mn></mrow></msub><mi>d</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mfenced><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mi>k</mi></mrow><mrow><mn>1</mn><mo>/</mo><mi>c</mi></mrow></msup></mrow></mfrac><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mrow><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mn>1</mn><mo>/</mo><mi>c</mi></mrow></msup></mrow></mfrac></mrow></mfenced></mrow></math></span> is a constant. This result constitutes an improvement upon that of Feng.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 5","pages":"Pages 1453-1458"},"PeriodicalIF":0.8000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Note on a sum involving the divisor function\",\"authors\":\"Liuying Wu\",\"doi\":\"10.1016/j.indag.2025.05.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mrow><mi>d</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> be the divisor function and denote by <span><math><mrow><mo>[</mo><mi>t</mi><mo>]</mo></mrow></math></span> the integral part of the real number <span><math><mi>t</mi></math></span>. In this paper, we prove that <span><math><mrow><munder><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>≤</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>1</mn><mo>/</mo><mi>c</mi></mrow></msup></mrow></munder><mi>d</mi><mfenced><mrow><mfenced><mrow><mfrac><mrow><mi>x</mi></mrow><mrow><msup><mrow><mi>n</mi></mrow><mrow><mi>c</mi></mrow></msup></mrow></mfrac></mrow></mfenced></mrow></mfenced><mo>=</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>c</mi></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mn>1</mn><mo>/</mo><mi>c</mi></mrow></msup><mo>+</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>ɛ</mi><mo>,</mo><mi>c</mi></mrow></msub><mfenced><mrow><msup><mrow><mi>x</mi></mrow><mrow><mo>max</mo><mrow><mo>{</mo><mrow><mo>(</mo><mn>2</mn><mi>c</mi><mo>+</mo><mn>2</mn><mo>)</mo></mrow><mo>/</mo><mrow><mo>(</mo><mn>2</mn><msup><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>5</mn><mi>c</mi><mo>+</mo><mn>2</mn><mo>)</mo></mrow><mo>,</mo><mn>5</mn><mo>/</mo><mrow><mo>(</mo><mn>5</mn><mi>c</mi><mo>+</mo><mn>6</mn><mo>)</mo></mrow><mo>}</mo></mrow><mo>+</mo><mi>ɛ</mi></mrow></msup></mrow></mfenced><mo>,</mo></mrow></math></span> where <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>k</mi><mo>≥</mo><mn>1</mn></mrow></msub><mi>d</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mfenced><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mi>k</mi></mrow><mrow><mn>1</mn><mo>/</mo><mi>c</mi></mrow></msup></mrow></mfrac><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mrow><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mn>1</mn><mo>/</mo><mi>c</mi></mrow></msup></mrow></mfrac></mrow></mfenced></mrow></math></span> is a constant. This result constitutes an improvement upon that of Feng.</div></div>\",\"PeriodicalId\":56126,\"journal\":{\"name\":\"Indagationes Mathematicae-New Series\",\"volume\":\"36 5\",\"pages\":\"Pages 1453-1458\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae-New Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019357725000497\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357725000497","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let be the divisor function and denote by the integral part of the real number . In this paper, we prove that where is a constant. This result constitutes an improvement upon that of Feng.
期刊介绍:
Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.