与RittE运算符相关的平方函数

IF 0.8 4区 数学 Q3 MATHEMATICS
Oualid Bouabdillah
{"title":"与RittE运算符相关的平方函数","authors":"Oualid Bouabdillah","doi":"10.1016/j.indag.2025.05.014","DOIUrl":null,"url":null,"abstract":"<div><div>In a finite subset <span><math><mrow><mi>E</mi><mo>=</mo><mrow><mo>{</mo><msub><mrow><mi>ξ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>ξ</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>}</mo></mrow></mrow></math></span> of the torus <span><math><mrow><mi>T</mi><mo>=</mo><mrow><mo>{</mo><mi>z</mi><mo>∈</mo><mi>ℂ</mi><mo>:</mo><mrow><mo>|</mo><mi>z</mi><mo>|</mo></mrow><mo>=</mo><mn>1</mn><mo>}</mo></mrow></mrow></math></span>, the notion of Ritt<span><math><msub><mrow></mrow><mrow><mi>E</mi></mrow></msub></math></span> operators on a Banach space and their functional calculus on generalized Stolz domains was developed and studied in Bouabdillah and Le Merdy (2024).</div><div>In this paper, we define a quadratic functional calculus for a Ritt<span><math><msub><mrow></mrow><mrow><mi>E</mi></mrow></msub></math></span> operator on <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span>, by a decomposition of type Franks–McIntosh. We show that with some hypothesis on the cotype of <span><math><mi>X</mi></math></span>, this notion is equivalent to the existence of a bounded functional calculus on <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span>.</div><div>We define for a Ritt<span><math><msub><mrow></mrow><mrow><mi>E</mi></mrow></msub></math></span> operator on a Banach space <span><math><mi>X</mi></math></span> and for any positive real number <span><math><mi>α</mi></math></span> and for any <span><math><mrow><mi>x</mi><mo>∈</mo><mi>X</mi></mrow></math></span>\n <span><math><mrow><msub><mrow><mo>‖</mo><mi>x</mi><mo>‖</mo></mrow><mrow><mi>T</mi><mo>,</mo><mi>α</mi></mrow></msub><mo>=</mo><munder><mrow><mo>lim</mo></mrow><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></munder><mrow><mo>‖</mo></mrow><munderover><mrow><mo>∑</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></munderover><msup><mrow><mi>k</mi></mrow><mrow><mi>α</mi><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><msub><mrow><mi>ɛ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>⊗</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msup><munderover><mrow><mo>∏</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>N</mi></mrow></munderover><msup><mrow><mrow><mo>(</mo><mi>I</mi><mo>−</mo><mover><mrow><msub><mrow><mi>ξ</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow><mo>¯</mo></mover><mi>T</mi><mo>)</mo></mrow></mrow><mrow><mi>α</mi></mrow></msup><msub><mrow><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><mo>‖</mo></mrow></mrow><mrow><mi>Rad</mi><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow></mrow></msub><mo>.</mo></mrow></math></span> We show that, under the condition of finite cotype of <span><math><mi>X</mi></math></span>, a Ritt<span><math><msub><mrow></mrow><mrow><mi>E</mi></mrow></msub></math></span> operator admits a quadratic functional calculus if and only if the estimates <span><math><mrow><msub><mrow><mo>‖</mo><mi>x</mi><mo>‖</mo></mrow><mrow><mi>T</mi><mo>,</mo><mi>α</mi></mrow></msub><mo>≲</mo><mo>‖</mo><mi>x</mi><mo>‖</mo></mrow></math></span> hold for both <span><math><mi>T</mi></math></span> and <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span>. We finally prove the equivalence between these square functions.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 5","pages":"Pages 1417-1452"},"PeriodicalIF":0.8000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Square functions associated with RittE operators\",\"authors\":\"Oualid Bouabdillah\",\"doi\":\"10.1016/j.indag.2025.05.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In a finite subset <span><math><mrow><mi>E</mi><mo>=</mo><mrow><mo>{</mo><msub><mrow><mi>ξ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>ξ</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>}</mo></mrow></mrow></math></span> of the torus <span><math><mrow><mi>T</mi><mo>=</mo><mrow><mo>{</mo><mi>z</mi><mo>∈</mo><mi>ℂ</mi><mo>:</mo><mrow><mo>|</mo><mi>z</mi><mo>|</mo></mrow><mo>=</mo><mn>1</mn><mo>}</mo></mrow></mrow></math></span>, the notion of Ritt<span><math><msub><mrow></mrow><mrow><mi>E</mi></mrow></msub></math></span> operators on a Banach space and their functional calculus on generalized Stolz domains was developed and studied in Bouabdillah and Le Merdy (2024).</div><div>In this paper, we define a quadratic functional calculus for a Ritt<span><math><msub><mrow></mrow><mrow><mi>E</mi></mrow></msub></math></span> operator on <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span>, by a decomposition of type Franks–McIntosh. We show that with some hypothesis on the cotype of <span><math><mi>X</mi></math></span>, this notion is equivalent to the existence of a bounded functional calculus on <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span>.</div><div>We define for a Ritt<span><math><msub><mrow></mrow><mrow><mi>E</mi></mrow></msub></math></span> operator on a Banach space <span><math><mi>X</mi></math></span> and for any positive real number <span><math><mi>α</mi></math></span> and for any <span><math><mrow><mi>x</mi><mo>∈</mo><mi>X</mi></mrow></math></span>\\n <span><math><mrow><msub><mrow><mo>‖</mo><mi>x</mi><mo>‖</mo></mrow><mrow><mi>T</mi><mo>,</mo><mi>α</mi></mrow></msub><mo>=</mo><munder><mrow><mo>lim</mo></mrow><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></munder><mrow><mo>‖</mo></mrow><munderover><mrow><mo>∑</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></munderover><msup><mrow><mi>k</mi></mrow><mrow><mi>α</mi><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><msub><mrow><mi>ɛ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>⊗</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msup><munderover><mrow><mo>∏</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>N</mi></mrow></munderover><msup><mrow><mrow><mo>(</mo><mi>I</mi><mo>−</mo><mover><mrow><msub><mrow><mi>ξ</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow><mo>¯</mo></mover><mi>T</mi><mo>)</mo></mrow></mrow><mrow><mi>α</mi></mrow></msup><msub><mrow><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><mo>‖</mo></mrow></mrow><mrow><mi>Rad</mi><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow></mrow></msub><mo>.</mo></mrow></math></span> We show that, under the condition of finite cotype of <span><math><mi>X</mi></math></span>, a Ritt<span><math><msub><mrow></mrow><mrow><mi>E</mi></mrow></msub></math></span> operator admits a quadratic functional calculus if and only if the estimates <span><math><mrow><msub><mrow><mo>‖</mo><mi>x</mi><mo>‖</mo></mrow><mrow><mi>T</mi><mo>,</mo><mi>α</mi></mrow></msub><mo>≲</mo><mo>‖</mo><mi>x</mi><mo>‖</mo></mrow></math></span> hold for both <span><math><mi>T</mi></math></span> and <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span>. We finally prove the equivalence between these square functions.</div></div>\",\"PeriodicalId\":56126,\"journal\":{\"name\":\"Indagationes Mathematicae-New Series\",\"volume\":\"36 5\",\"pages\":\"Pages 1417-1452\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae-New Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019357725000734\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357725000734","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在环面T={z∈:|z|=1}的有限子集E={ξ1,…,ξN}中,提出并研究了Banach空间上RittE算子的概念及其广义Stolz域上的泛函演算。本文通过Franks-McIntosh类型的分解,定义了Er上的RittE算子的二次泛函演算。我们证明了对于X的共型的一些假设,这个概念等价于Er上有界泛函演算的存在性。我们定义了对于Banach空间X上的RittE算子,对于任意正实数α,对于任意X∈X‖X‖T,α=limn→∞‖∑k=1nkα−1/2 λ k⊗Tk−1∏j=1N(I−ξj¯T)α(X)‖Rad(X)。证明了在X的有限共型条件下,RittE算子当且仅当对T和T *的估计‖X‖T,α≤‖X‖成立时允许二次泛函演算。我们最终证明了这些平方函数之间的等价性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Square functions associated with RittE operators
In a finite subset E={ξ1,,ξN} of the torus T={z:|z|=1}, the notion of RittE operators on a Banach space and their functional calculus on generalized Stolz domains was developed and studied in Bouabdillah and Le Merdy (2024).
In this paper, we define a quadratic functional calculus for a RittE operator on Er, by a decomposition of type Franks–McIntosh. We show that with some hypothesis on the cotype of X, this notion is equivalent to the existence of a bounded functional calculus on Er.
We define for a RittE operator on a Banach space X and for any positive real number α and for any xX xT,α=limnk=1nkα1/2ɛkTk1j=1N(Iξj¯T)α(x)Rad(X). We show that, under the condition of finite cotype of X, a RittE operator admits a quadratic functional calculus if and only if the estimates xT,αx hold for both T and T. We finally prove the equivalence between these square functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
74
审稿时长
79 days
期刊介绍: Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信