{"title":"与RittE运算符相关的平方函数","authors":"Oualid Bouabdillah","doi":"10.1016/j.indag.2025.05.014","DOIUrl":null,"url":null,"abstract":"<div><div>In a finite subset <span><math><mrow><mi>E</mi><mo>=</mo><mrow><mo>{</mo><msub><mrow><mi>ξ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>ξ</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>}</mo></mrow></mrow></math></span> of the torus <span><math><mrow><mi>T</mi><mo>=</mo><mrow><mo>{</mo><mi>z</mi><mo>∈</mo><mi>ℂ</mi><mo>:</mo><mrow><mo>|</mo><mi>z</mi><mo>|</mo></mrow><mo>=</mo><mn>1</mn><mo>}</mo></mrow></mrow></math></span>, the notion of Ritt<span><math><msub><mrow></mrow><mrow><mi>E</mi></mrow></msub></math></span> operators on a Banach space and their functional calculus on generalized Stolz domains was developed and studied in Bouabdillah and Le Merdy (2024).</div><div>In this paper, we define a quadratic functional calculus for a Ritt<span><math><msub><mrow></mrow><mrow><mi>E</mi></mrow></msub></math></span> operator on <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span>, by a decomposition of type Franks–McIntosh. We show that with some hypothesis on the cotype of <span><math><mi>X</mi></math></span>, this notion is equivalent to the existence of a bounded functional calculus on <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span>.</div><div>We define for a Ritt<span><math><msub><mrow></mrow><mrow><mi>E</mi></mrow></msub></math></span> operator on a Banach space <span><math><mi>X</mi></math></span> and for any positive real number <span><math><mi>α</mi></math></span> and for any <span><math><mrow><mi>x</mi><mo>∈</mo><mi>X</mi></mrow></math></span>\n <span><math><mrow><msub><mrow><mo>‖</mo><mi>x</mi><mo>‖</mo></mrow><mrow><mi>T</mi><mo>,</mo><mi>α</mi></mrow></msub><mo>=</mo><munder><mrow><mo>lim</mo></mrow><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></munder><mrow><mo>‖</mo></mrow><munderover><mrow><mo>∑</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></munderover><msup><mrow><mi>k</mi></mrow><mrow><mi>α</mi><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><msub><mrow><mi>ɛ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>⊗</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msup><munderover><mrow><mo>∏</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>N</mi></mrow></munderover><msup><mrow><mrow><mo>(</mo><mi>I</mi><mo>−</mo><mover><mrow><msub><mrow><mi>ξ</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow><mo>¯</mo></mover><mi>T</mi><mo>)</mo></mrow></mrow><mrow><mi>α</mi></mrow></msup><msub><mrow><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><mo>‖</mo></mrow></mrow><mrow><mi>Rad</mi><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow></mrow></msub><mo>.</mo></mrow></math></span> We show that, under the condition of finite cotype of <span><math><mi>X</mi></math></span>, a Ritt<span><math><msub><mrow></mrow><mrow><mi>E</mi></mrow></msub></math></span> operator admits a quadratic functional calculus if and only if the estimates <span><math><mrow><msub><mrow><mo>‖</mo><mi>x</mi><mo>‖</mo></mrow><mrow><mi>T</mi><mo>,</mo><mi>α</mi></mrow></msub><mo>≲</mo><mo>‖</mo><mi>x</mi><mo>‖</mo></mrow></math></span> hold for both <span><math><mi>T</mi></math></span> and <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span>. We finally prove the equivalence between these square functions.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 5","pages":"Pages 1417-1452"},"PeriodicalIF":0.8000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Square functions associated with RittE operators\",\"authors\":\"Oualid Bouabdillah\",\"doi\":\"10.1016/j.indag.2025.05.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In a finite subset <span><math><mrow><mi>E</mi><mo>=</mo><mrow><mo>{</mo><msub><mrow><mi>ξ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>ξ</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>}</mo></mrow></mrow></math></span> of the torus <span><math><mrow><mi>T</mi><mo>=</mo><mrow><mo>{</mo><mi>z</mi><mo>∈</mo><mi>ℂ</mi><mo>:</mo><mrow><mo>|</mo><mi>z</mi><mo>|</mo></mrow><mo>=</mo><mn>1</mn><mo>}</mo></mrow></mrow></math></span>, the notion of Ritt<span><math><msub><mrow></mrow><mrow><mi>E</mi></mrow></msub></math></span> operators on a Banach space and their functional calculus on generalized Stolz domains was developed and studied in Bouabdillah and Le Merdy (2024).</div><div>In this paper, we define a quadratic functional calculus for a Ritt<span><math><msub><mrow></mrow><mrow><mi>E</mi></mrow></msub></math></span> operator on <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span>, by a decomposition of type Franks–McIntosh. We show that with some hypothesis on the cotype of <span><math><mi>X</mi></math></span>, this notion is equivalent to the existence of a bounded functional calculus on <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span>.</div><div>We define for a Ritt<span><math><msub><mrow></mrow><mrow><mi>E</mi></mrow></msub></math></span> operator on a Banach space <span><math><mi>X</mi></math></span> and for any positive real number <span><math><mi>α</mi></math></span> and for any <span><math><mrow><mi>x</mi><mo>∈</mo><mi>X</mi></mrow></math></span>\\n <span><math><mrow><msub><mrow><mo>‖</mo><mi>x</mi><mo>‖</mo></mrow><mrow><mi>T</mi><mo>,</mo><mi>α</mi></mrow></msub><mo>=</mo><munder><mrow><mo>lim</mo></mrow><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></munder><mrow><mo>‖</mo></mrow><munderover><mrow><mo>∑</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></munderover><msup><mrow><mi>k</mi></mrow><mrow><mi>α</mi><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><msub><mrow><mi>ɛ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>⊗</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msup><munderover><mrow><mo>∏</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>N</mi></mrow></munderover><msup><mrow><mrow><mo>(</mo><mi>I</mi><mo>−</mo><mover><mrow><msub><mrow><mi>ξ</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow><mo>¯</mo></mover><mi>T</mi><mo>)</mo></mrow></mrow><mrow><mi>α</mi></mrow></msup><msub><mrow><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><mo>‖</mo></mrow></mrow><mrow><mi>Rad</mi><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow></mrow></msub><mo>.</mo></mrow></math></span> We show that, under the condition of finite cotype of <span><math><mi>X</mi></math></span>, a Ritt<span><math><msub><mrow></mrow><mrow><mi>E</mi></mrow></msub></math></span> operator admits a quadratic functional calculus if and only if the estimates <span><math><mrow><msub><mrow><mo>‖</mo><mi>x</mi><mo>‖</mo></mrow><mrow><mi>T</mi><mo>,</mo><mi>α</mi></mrow></msub><mo>≲</mo><mo>‖</mo><mi>x</mi><mo>‖</mo></mrow></math></span> hold for both <span><math><mi>T</mi></math></span> and <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span>. We finally prove the equivalence between these square functions.</div></div>\",\"PeriodicalId\":56126,\"journal\":{\"name\":\"Indagationes Mathematicae-New Series\",\"volume\":\"36 5\",\"pages\":\"Pages 1417-1452\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae-New Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019357725000734\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357725000734","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
In a finite subset of the torus , the notion of Ritt operators on a Banach space and their functional calculus on generalized Stolz domains was developed and studied in Bouabdillah and Le Merdy (2024).
In this paper, we define a quadratic functional calculus for a Ritt operator on , by a decomposition of type Franks–McIntosh. We show that with some hypothesis on the cotype of , this notion is equivalent to the existence of a bounded functional calculus on .
We define for a Ritt operator on a Banach space and for any positive real number and for any
We show that, under the condition of finite cotype of , a Ritt operator admits a quadratic functional calculus if and only if the estimates hold for both and . We finally prove the equivalence between these square functions.
期刊介绍:
Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.