{"title":"Lr(E,F)在Lr(E,Fδ)中的分布","authors":"Quinn Kiervin Starkey, Foivos Xanthos","doi":"10.1016/j.indag.2025.05.003","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mrow><mi>E</mi><mo>,</mo><mi>F</mi></mrow></math></span> be Archimedean Riesz spaces, and let <span><math><msup><mrow><mi>F</mi></mrow><mrow><mi>δ</mi></mrow></msup></math></span> denote an order completion of <span><math><mi>F</mi></math></span>. In this note, we provide necessary conditions under which the space of all regular operators <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup><mrow><mo>(</mo><mi>E</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span> is pervasive in <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup><mrow><mo>(</mo><mi>E</mi><mo>,</mo><msup><mrow><mi>F</mi></mrow><mrow><mi>δ</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>. Pervasiveness of <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup><mrow><mo>(</mo><mi>E</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span> in <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup><mrow><mo>(</mo><mi>E</mi><mo>,</mo><msup><mrow><mi>F</mi></mrow><mrow><mi>δ</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> implies that the Riesz completion of <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup><mrow><mo>(</mo><mi>E</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span> can be realized as a Riesz subspace of <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup><mrow><mo>(</mo><mi>E</mi><mo>,</mo><msup><mrow><mi>F</mi></mrow><mrow><mi>δ</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>. It also ensures that the regular part of the space of order continuous operators <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>o</mi><mi>c</mi></mrow></msup><mrow><mo>(</mo><mi>E</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span> forms a band of <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup><mrow><mo>(</mo><mi>E</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span>. Furthermore, the positive part <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> of any operator <span><math><mrow><mi>T</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup><mrow><mo>(</mo><mi>E</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span>, provided it exists, is given by the Riesz–Kantorovich formula. The results apply in particular to cases where <span><math><mrow><mi>E</mi><mo>=</mo><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>∞</mi></mrow></msubsup></mrow></math></span>, <span><math><mrow><mi>E</mi><mo>=</mo><mi>c</mi></mrow></math></span>, or <span><math><mi>F</mi></math></span> is atomic, and they provide solutions to some problems posed in Abramovich and Wickstead (1991) and Wickstead (2024).</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 5","pages":"Pages 1405-1416"},"PeriodicalIF":0.8000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pervasiveness of Lr(E,F) in Lr(E,Fδ)\",\"authors\":\"Quinn Kiervin Starkey, Foivos Xanthos\",\"doi\":\"10.1016/j.indag.2025.05.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mrow><mi>E</mi><mo>,</mo><mi>F</mi></mrow></math></span> be Archimedean Riesz spaces, and let <span><math><msup><mrow><mi>F</mi></mrow><mrow><mi>δ</mi></mrow></msup></math></span> denote an order completion of <span><math><mi>F</mi></math></span>. In this note, we provide necessary conditions under which the space of all regular operators <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup><mrow><mo>(</mo><mi>E</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span> is pervasive in <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup><mrow><mo>(</mo><mi>E</mi><mo>,</mo><msup><mrow><mi>F</mi></mrow><mrow><mi>δ</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>. Pervasiveness of <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup><mrow><mo>(</mo><mi>E</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span> in <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup><mrow><mo>(</mo><mi>E</mi><mo>,</mo><msup><mrow><mi>F</mi></mrow><mrow><mi>δ</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> implies that the Riesz completion of <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup><mrow><mo>(</mo><mi>E</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span> can be realized as a Riesz subspace of <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup><mrow><mo>(</mo><mi>E</mi><mo>,</mo><msup><mrow><mi>F</mi></mrow><mrow><mi>δ</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>. It also ensures that the regular part of the space of order continuous operators <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>o</mi><mi>c</mi></mrow></msup><mrow><mo>(</mo><mi>E</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span> forms a band of <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup><mrow><mo>(</mo><mi>E</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span>. Furthermore, the positive part <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> of any operator <span><math><mrow><mi>T</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup><mrow><mo>(</mo><mi>E</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span>, provided it exists, is given by the Riesz–Kantorovich formula. The results apply in particular to cases where <span><math><mrow><mi>E</mi><mo>=</mo><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>∞</mi></mrow></msubsup></mrow></math></span>, <span><math><mrow><mi>E</mi><mo>=</mo><mi>c</mi></mrow></math></span>, or <span><math><mi>F</mi></math></span> is atomic, and they provide solutions to some problems posed in Abramovich and Wickstead (1991) and Wickstead (2024).</div></div>\",\"PeriodicalId\":56126,\"journal\":{\"name\":\"Indagationes Mathematicae-New Series\",\"volume\":\"36 5\",\"pages\":\"Pages 1405-1416\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae-New Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019357725000461\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357725000461","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let be Archimedean Riesz spaces, and let denote an order completion of . In this note, we provide necessary conditions under which the space of all regular operators is pervasive in . Pervasiveness of in implies that the Riesz completion of can be realized as a Riesz subspace of . It also ensures that the regular part of the space of order continuous operators forms a band of . Furthermore, the positive part of any operator , provided it exists, is given by the Riesz–Kantorovich formula. The results apply in particular to cases where , , or is atomic, and they provide solutions to some problems posed in Abramovich and Wickstead (1991) and Wickstead (2024).
期刊介绍:
Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.