pg=0且有对合的一般型曲面上的Bloch猜想:Enriques情形

IF 0.8 4区 数学 Q3 MATHEMATICS
Kalyan Banerjee
{"title":"pg=0且有对合的一般型曲面上的Bloch猜想:Enriques情形","authors":"Kalyan Banerjee","doi":"10.1016/j.indag.2025.04.002","DOIUrl":null,"url":null,"abstract":"<div><div>In this short note we prove that an involution on certain examples of surfaces of general type with <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>=</mo><mn>0</mn></mrow></math></span>, acts as identity on the Chow group of zero cycles of the relevant surface. In particular we consider examples of such surfaces when the quotient is an Enriques surface and show that the Bloch conjecture holds for such surfaces.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 5","pages":"Pages 1329-1335"},"PeriodicalIF":0.8000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bloch’s conjecture on certain surfaces of general type with pg=0 and with an involution: The Enriques case\",\"authors\":\"Kalyan Banerjee\",\"doi\":\"10.1016/j.indag.2025.04.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this short note we prove that an involution on certain examples of surfaces of general type with <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>=</mo><mn>0</mn></mrow></math></span>, acts as identity on the Chow group of zero cycles of the relevant surface. In particular we consider examples of such surfaces when the quotient is an Enriques surface and show that the Bloch conjecture holds for such surfaces.</div></div>\",\"PeriodicalId\":56126,\"journal\":{\"name\":\"Indagationes Mathematicae-New Series\",\"volume\":\"36 5\",\"pages\":\"Pages 1329-1335\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae-New Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019357725000321\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357725000321","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这篇简短的笔记中,我们证明了在pg=0的一般型曲面的某些例子上的对合,在相关曲面的零环的Chow群上起恒等作用。特别地,我们考虑了商为Enriques曲面时的这种曲面的例子,并证明了布洛赫猜想对这种曲面成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bloch’s conjecture on certain surfaces of general type with pg=0 and with an involution: The Enriques case
In this short note we prove that an involution on certain examples of surfaces of general type with pg=0, acts as identity on the Chow group of zero cycles of the relevant surface. In particular we consider examples of such surfaces when the quotient is an Enriques surface and show that the Bloch conjecture holds for such surfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
74
审稿时长
79 days
期刊介绍: Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信