Paul F. Salipante , Michael Cromer , Gerardo E. Pradillo , Steven D. Hudson
{"title":"跟踪导致非定常交叉槽流动的聚合物取向和流动:高速成像和建模","authors":"Paul F. Salipante , Michael Cromer , Gerardo E. Pradillo , Steven D. Hudson","doi":"10.1016/j.jnnfm.2025.105471","DOIUrl":null,"url":null,"abstract":"<div><div>Viscoelastic flow instabilities limit polymer processing rates. High-speed optical measurements of stress and flow are used to provide insight into the relationships between polymer orientation and flow field that lead to viscoelastic fluctuations and instability. The flow of high-molar-mass polyethylene oxide solutions through a cross-slot geometry transitions from a symmetric flow into an asymmetric flow that continually switches its asymmetric configuration at sufficiently high flow rates. Data was acquired by synchronized particle velocimetry and polarization imaging at sub-ms resolution. Three-dimensional numerical simulations using the Giesekus constitutive model demonstrate similar flow switching behavior. Both experiments and simulations show a growth of flow–polymer misalignment near stagnation points prior to switching of the flow asymmetry direction. The role of polymer misalignment demonstrates the important role of stagnation points in flow fields, and this understanding may suggest ways to improve control of instabilities for more efficient processing.</div></div>","PeriodicalId":54782,"journal":{"name":"Journal of Non-Newtonian Fluid Mechanics","volume":"345 ","pages":"Article 105471"},"PeriodicalIF":2.8000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tracking polymer orientation and flow leading to unsteady cross-slot flow: High-speed imaging and modeling\",\"authors\":\"Paul F. Salipante , Michael Cromer , Gerardo E. Pradillo , Steven D. Hudson\",\"doi\":\"10.1016/j.jnnfm.2025.105471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Viscoelastic flow instabilities limit polymer processing rates. High-speed optical measurements of stress and flow are used to provide insight into the relationships between polymer orientation and flow field that lead to viscoelastic fluctuations and instability. The flow of high-molar-mass polyethylene oxide solutions through a cross-slot geometry transitions from a symmetric flow into an asymmetric flow that continually switches its asymmetric configuration at sufficiently high flow rates. Data was acquired by synchronized particle velocimetry and polarization imaging at sub-ms resolution. Three-dimensional numerical simulations using the Giesekus constitutive model demonstrate similar flow switching behavior. Both experiments and simulations show a growth of flow–polymer misalignment near stagnation points prior to switching of the flow asymmetry direction. The role of polymer misalignment demonstrates the important role of stagnation points in flow fields, and this understanding may suggest ways to improve control of instabilities for more efficient processing.</div></div>\",\"PeriodicalId\":54782,\"journal\":{\"name\":\"Journal of Non-Newtonian Fluid Mechanics\",\"volume\":\"345 \",\"pages\":\"Article 105471\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Non-Newtonian Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377025725000904\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Newtonian Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377025725000904","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Tracking polymer orientation and flow leading to unsteady cross-slot flow: High-speed imaging and modeling
Viscoelastic flow instabilities limit polymer processing rates. High-speed optical measurements of stress and flow are used to provide insight into the relationships between polymer orientation and flow field that lead to viscoelastic fluctuations and instability. The flow of high-molar-mass polyethylene oxide solutions through a cross-slot geometry transitions from a symmetric flow into an asymmetric flow that continually switches its asymmetric configuration at sufficiently high flow rates. Data was acquired by synchronized particle velocimetry and polarization imaging at sub-ms resolution. Three-dimensional numerical simulations using the Giesekus constitutive model demonstrate similar flow switching behavior. Both experiments and simulations show a growth of flow–polymer misalignment near stagnation points prior to switching of the flow asymmetry direction. The role of polymer misalignment demonstrates the important role of stagnation points in flow fields, and this understanding may suggest ways to improve control of instabilities for more efficient processing.
期刊介绍:
The Journal of Non-Newtonian Fluid Mechanics publishes research on flowing soft matter systems. Submissions in all areas of flowing complex fluids are welcomed, including polymer melts and solutions, suspensions, colloids, surfactant solutions, biological fluids, gels, liquid crystals and granular materials. Flow problems relevant to microfluidics, lab-on-a-chip, nanofluidics, biological flows, geophysical flows, industrial processes and other applications are of interest.
Subjects considered suitable for the journal include the following (not necessarily in order of importance):
Theoretical, computational and experimental studies of naturally or technologically relevant flow problems where the non-Newtonian nature of the fluid is important in determining the character of the flow. We seek in particular studies that lend mechanistic insight into flow behavior in complex fluids or highlight flow phenomena unique to complex fluids. Examples include
Instabilities, unsteady and turbulent or chaotic flow characteristics in non-Newtonian fluids,
Multiphase flows involving complex fluids,
Problems involving transport phenomena such as heat and mass transfer and mixing, to the extent that the non-Newtonian flow behavior is central to the transport phenomena,
Novel flow situations that suggest the need for further theoretical study,
Practical situations of flow that are in need of systematic theoretical and experimental research. Such issues and developments commonly arise, for example, in the polymer processing, petroleum, pharmaceutical, biomedical and consumer product industries.