基于Laval喷嘴的随机非线性严格反馈系统的深度神经网络最优间歇控制

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Xizhao Wang , Xingfu Zhang , Jinhui Chen , Jun Mei , Weifeng Wang
{"title":"基于Laval喷嘴的随机非线性严格反馈系统的深度神经网络最优间歇控制","authors":"Xizhao Wang ,&nbsp;Xingfu Zhang ,&nbsp;Jinhui Chen ,&nbsp;Jun Mei ,&nbsp;Weifeng Wang","doi":"10.1016/j.chaos.2025.117078","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes an optimal intermittent control strategy for a class of stochastic nonlinear strict-feedback systems with unknown dynamics. A novel concept, termed the ”Laval-Nozzle”, is introduced to precisely characterize the control performance of nonlinear systems under an event-triggered intermittent mechanism. Unlike existing methods, which focus on ensuring optimal predefined performance only within control intervals, this work establishes an optimal prescribed performance criterion for nonlinear systems based on the proposed Laval-Nozzle. The derived results capture the prescribed performance across both control and non-control intervals, thereby enhancing the overall effectiveness of the intermittent control strategy. Furthermore, unlike conventional approaches, we leverage deep neural networks (DNNs) to approximate highly complex functions, improving the estimation of unknown nonlinear dynamics. Simulation results validate the effectiveness of the proposed scheme, demonstrating that all signals in the closed-loop system remain stable in the mean-square sense, while tracking errors are constrained within a predefined set of functions.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"200 ","pages":"Article 117078"},"PeriodicalIF":5.6000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laval Nozzle-based optimal intermittent control of stochastic nonlinear strict-feedback systems via deep neural networks\",\"authors\":\"Xizhao Wang ,&nbsp;Xingfu Zhang ,&nbsp;Jinhui Chen ,&nbsp;Jun Mei ,&nbsp;Weifeng Wang\",\"doi\":\"10.1016/j.chaos.2025.117078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper proposes an optimal intermittent control strategy for a class of stochastic nonlinear strict-feedback systems with unknown dynamics. A novel concept, termed the ”Laval-Nozzle”, is introduced to precisely characterize the control performance of nonlinear systems under an event-triggered intermittent mechanism. Unlike existing methods, which focus on ensuring optimal predefined performance only within control intervals, this work establishes an optimal prescribed performance criterion for nonlinear systems based on the proposed Laval-Nozzle. The derived results capture the prescribed performance across both control and non-control intervals, thereby enhancing the overall effectiveness of the intermittent control strategy. Furthermore, unlike conventional approaches, we leverage deep neural networks (DNNs) to approximate highly complex functions, improving the estimation of unknown nonlinear dynamics. Simulation results validate the effectiveness of the proposed scheme, demonstrating that all signals in the closed-loop system remain stable in the mean-square sense, while tracking errors are constrained within a predefined set of functions.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"200 \",\"pages\":\"Article 117078\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925010914\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925010914","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

针对一类动力学未知的随机非线性严格反馈系统,提出了一种最优间歇控制策略。引入了一种称为“拉瓦尔喷嘴”的新概念,以精确表征事件触发间歇机制下非线性系统的控制性能。与现有的方法不同,这些方法只关注在控制区间内确保最佳的预定义性能,该工作基于所提出的Laval-Nozzle建立了非线性系统的最佳规定性能准则。导出的结果捕获了控制和非控制区间的规定性能,从而提高了间歇控制策略的整体有效性。此外,与传统方法不同,我们利用深度神经网络(dnn)来近似高度复杂的函数,改进未知非线性动力学的估计。仿真结果验证了所提方案的有效性,表明闭环系统中的所有信号在均方意义下保持稳定,而跟踪误差被约束在预定义的函数集内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Laval Nozzle-based optimal intermittent control of stochastic nonlinear strict-feedback systems via deep neural networks
This paper proposes an optimal intermittent control strategy for a class of stochastic nonlinear strict-feedback systems with unknown dynamics. A novel concept, termed the ”Laval-Nozzle”, is introduced to precisely characterize the control performance of nonlinear systems under an event-triggered intermittent mechanism. Unlike existing methods, which focus on ensuring optimal predefined performance only within control intervals, this work establishes an optimal prescribed performance criterion for nonlinear systems based on the proposed Laval-Nozzle. The derived results capture the prescribed performance across both control and non-control intervals, thereby enhancing the overall effectiveness of the intermittent control strategy. Furthermore, unlike conventional approaches, we leverage deep neural networks (DNNs) to approximate highly complex functions, improving the estimation of unknown nonlinear dynamics. Simulation results validate the effectiveness of the proposed scheme, demonstrating that all signals in the closed-loop system remain stable in the mean-square sense, while tracking errors are constrained within a predefined set of functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信