网络钓鱼网站智能检测:一种基于自然超参数调优的CNN-SVM方法

Santosh Kumar Birthriya, Priyanka Ahlawat, Ankit Kumar Jain
{"title":"网络钓鱼网站智能检测:一种基于自然超参数调优的CNN-SVM方法","authors":"Santosh Kumar Birthriya,&nbsp;Priyanka Ahlawat,&nbsp;Ankit Kumar Jain","doi":"10.1016/j.csa.2025.100100","DOIUrl":null,"url":null,"abstract":"<div><div>Phishing attacks represent a growing threat to online users and software developers, necessitating the development of advanced detection strategies. This study proposes a hybrid framework that integrates convolutional neural networks (CNN) for feature extraction and support vector machines (SVM) for classification, with the SVM optimized using the grey wolf optimizer (GWO). The CNN component is responsible for capturing complex and discriminative patterns from website data, enabling more effective differentiation between phishing and legitimate websites. Hyperparameter tuning via GWO enhances the classification performance of the SVM by generating an optimal decision boundary. Evaluation was conducted using established datasets, including those from Kaggle, the UCI Machine Learning Repository, Phishtank, 5000 Best Websites, and Alexa. Experimental results show that the CNN–SVM model, with GWO optimization, achieved an accuracy of 99.18 %, indicating its practical utility in phishing detection applications. The findings suggest that the proposed framework, supported by additional security mechanisms, contributes to a reduction in false positives while maintaining reliable detection of phishing threats.</div></div>","PeriodicalId":100351,"journal":{"name":"Cyber Security and Applications","volume":"3 ","pages":"Article 100100"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent phishing website detection: A CNN-SVM approach with nature-inspired hyperparameter tuning\",\"authors\":\"Santosh Kumar Birthriya,&nbsp;Priyanka Ahlawat,&nbsp;Ankit Kumar Jain\",\"doi\":\"10.1016/j.csa.2025.100100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Phishing attacks represent a growing threat to online users and software developers, necessitating the development of advanced detection strategies. This study proposes a hybrid framework that integrates convolutional neural networks (CNN) for feature extraction and support vector machines (SVM) for classification, with the SVM optimized using the grey wolf optimizer (GWO). The CNN component is responsible for capturing complex and discriminative patterns from website data, enabling more effective differentiation between phishing and legitimate websites. Hyperparameter tuning via GWO enhances the classification performance of the SVM by generating an optimal decision boundary. Evaluation was conducted using established datasets, including those from Kaggle, the UCI Machine Learning Repository, Phishtank, 5000 Best Websites, and Alexa. Experimental results show that the CNN–SVM model, with GWO optimization, achieved an accuracy of 99.18 %, indicating its practical utility in phishing detection applications. The findings suggest that the proposed framework, supported by additional security mechanisms, contributes to a reduction in false positives while maintaining reliable detection of phishing threats.</div></div>\",\"PeriodicalId\":100351,\"journal\":{\"name\":\"Cyber Security and Applications\",\"volume\":\"3 \",\"pages\":\"Article 100100\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cyber Security and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772918425000177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cyber Security and Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772918425000177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

网络钓鱼攻击对在线用户和软件开发人员构成了越来越大的威胁,因此需要开发先进的检测策略。本研究提出了一种混合框架,该框架将卷积神经网络(CNN)用于特征提取,支持向量机(SVM)用于分类,支持向量机使用灰狼优化器(GWO)进行优化。CNN组件负责从网站数据中捕获复杂的判别模式,从而更有效地区分网络钓鱼和合法网站。通过GWO进行超参数调优,通过生成最优决策边界来提高支持向量机的分类性能。评估使用已建立的数据集进行,包括来自Kaggle、UCI机器学习存储库、Phishtank、5000 Best Websites和Alexa的数据集。实验结果表明,经过GWO优化的CNN-SVM模型准确率达到99.18%,表明其在网络钓鱼检测中的实际应用价值。研究结果表明,在额外安全机制的支持下,拟议的框架有助于减少误报,同时保持对网络钓鱼威胁的可靠检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent phishing website detection: A CNN-SVM approach with nature-inspired hyperparameter tuning
Phishing attacks represent a growing threat to online users and software developers, necessitating the development of advanced detection strategies. This study proposes a hybrid framework that integrates convolutional neural networks (CNN) for feature extraction and support vector machines (SVM) for classification, with the SVM optimized using the grey wolf optimizer (GWO). The CNN component is responsible for capturing complex and discriminative patterns from website data, enabling more effective differentiation between phishing and legitimate websites. Hyperparameter tuning via GWO enhances the classification performance of the SVM by generating an optimal decision boundary. Evaluation was conducted using established datasets, including those from Kaggle, the UCI Machine Learning Repository, Phishtank, 5000 Best Websites, and Alexa. Experimental results show that the CNN–SVM model, with GWO optimization, achieved an accuracy of 99.18 %, indicating its practical utility in phishing detection applications. The findings suggest that the proposed framework, supported by additional security mechanisms, contributes to a reduction in false positives while maintaining reliable detection of phishing threats.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信