具有非局部前瞻交互的aw - rasle - zhang交通模型

IF 1.3 2区 数学 Q1 MATHEMATICS
Thomas Hamori , Changhui Tan
{"title":"具有非局部前瞻交互的aw - rasle - zhang交通模型","authors":"Thomas Hamori ,&nbsp;Changhui Tan","doi":"10.1016/j.na.2025.113930","DOIUrl":null,"url":null,"abstract":"<div><div>We present a new family of second-order traffic flow models, extending the Aw–Rascle–Zhang (ARZ) model to incorporate nonlocal interactions. Our model includes a specific nonlocal Arrhenius-type look-ahead slowdown factor. We establish both local and global well-posedness theories for these nonlocal ARZ models.</div><div>In contrast to the local ARZ model, where generic smooth initial data typically lead to finite-time shock formation, we show that our nonlocal ARZ model exhibits global regularity for a class of smooth subcritical initial data. Our result highlights the potential of nonlocal interactions to mitigate shock formations in second-order traffic flow models.</div><div>Our analytical approach relies on investigating phase plane dynamics. We introduce a novel comparison principle based on a mediant inequality to effectively handle the nonlocal information inherent in our model.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"262 ","pages":"Article 113930"},"PeriodicalIF":1.3000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Aw–Rascle–Zhang traffic models with nonlocal look-ahead interactions\",\"authors\":\"Thomas Hamori ,&nbsp;Changhui Tan\",\"doi\":\"10.1016/j.na.2025.113930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present a new family of second-order traffic flow models, extending the Aw–Rascle–Zhang (ARZ) model to incorporate nonlocal interactions. Our model includes a specific nonlocal Arrhenius-type look-ahead slowdown factor. We establish both local and global well-posedness theories for these nonlocal ARZ models.</div><div>In contrast to the local ARZ model, where generic smooth initial data typically lead to finite-time shock formation, we show that our nonlocal ARZ model exhibits global regularity for a class of smooth subcritical initial data. Our result highlights the potential of nonlocal interactions to mitigate shock formations in second-order traffic flow models.</div><div>Our analytical approach relies on investigating phase plane dynamics. We introduce a novel comparison principle based on a mediant inequality to effectively handle the nonlocal information inherent in our model.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"262 \",\"pages\":\"Article 113930\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25001841\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25001841","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一类新的二阶交通流模型,扩展了aw - rasle - zhang (ARZ)模型以纳入非局部相互作用。我们的模型包括一个特定的非局部阿伦尼乌斯类型的前瞻性减速因子。我们建立了这些非局部ARZ模型的局部和全局适定性理论。与一般光滑初始数据通常导致有限时间激波形成的局部ARZ模型相反,我们表明我们的非局部ARZ模型对于一类光滑亚临界初始数据具有全局规律性。我们的结果强调了非局部相互作用在二阶交通流模型中减轻冲击形成的潜力。我们的分析方法依赖于研究相平面动力学。我们引入了一种新的基于中间不等式的比较原理来有效地处理模型中固有的非局部信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Aw–Rascle–Zhang traffic models with nonlocal look-ahead interactions
We present a new family of second-order traffic flow models, extending the Aw–Rascle–Zhang (ARZ) model to incorporate nonlocal interactions. Our model includes a specific nonlocal Arrhenius-type look-ahead slowdown factor. We establish both local and global well-posedness theories for these nonlocal ARZ models.
In contrast to the local ARZ model, where generic smooth initial data typically lead to finite-time shock formation, we show that our nonlocal ARZ model exhibits global regularity for a class of smooth subcritical initial data. Our result highlights the potential of nonlocal interactions to mitigate shock formations in second-order traffic flow models.
Our analytical approach relies on investigating phase plane dynamics. We introduce a novel comparison principle based on a mediant inequality to effectively handle the nonlocal information inherent in our model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信