{"title":"探讨低温大气等离子体诱导糖化牛血清白蛋白自组装的影响","authors":"Ashim Jyoti Bharati , Daphishisha Phawa , Priojeet Daimary , Monalisa Patra , Kamatchi Sankaranarayanan","doi":"10.1016/j.bpc.2025.107516","DOIUrl":null,"url":null,"abstract":"<div><div>Bovine Serum Albumin (BSA) is a globular, water-soluble protein widely used as a model system due to its stability, binding capacity, and structural similarity to human serum albumin (HSA). Cold atmospheric plasma (CAP) has emerged as a versatile tool for biomolecule modification, sterilization, food preservation, and wound healing. This study explores the effects of CAP on glycated BSA, focusing on structural and self-assembly processes. SEM analysis reveals that CAP induces distinct protein self-assemblies depending on treatment duration. Thioflavin assays show increased fluorescence intensity in CAP-treated glycated BSA compared to native and glycated BSA, indicating an enhancement in β-sheet content and self-assembly. These findings offer valuable insights into CAP's role in modulating protein structures, with implications for biomaterials, disease mechanisms, and protein engineering.</div></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"327 ","pages":"Article 107516"},"PeriodicalIF":2.2000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring impact of cold atmospheric plasma directed self-assembly of glycated bovine serum albumin\",\"authors\":\"Ashim Jyoti Bharati , Daphishisha Phawa , Priojeet Daimary , Monalisa Patra , Kamatchi Sankaranarayanan\",\"doi\":\"10.1016/j.bpc.2025.107516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Bovine Serum Albumin (BSA) is a globular, water-soluble protein widely used as a model system due to its stability, binding capacity, and structural similarity to human serum albumin (HSA). Cold atmospheric plasma (CAP) has emerged as a versatile tool for biomolecule modification, sterilization, food preservation, and wound healing. This study explores the effects of CAP on glycated BSA, focusing on structural and self-assembly processes. SEM analysis reveals that CAP induces distinct protein self-assemblies depending on treatment duration. Thioflavin assays show increased fluorescence intensity in CAP-treated glycated BSA compared to native and glycated BSA, indicating an enhancement in β-sheet content and self-assembly. These findings offer valuable insights into CAP's role in modulating protein structures, with implications for biomaterials, disease mechanisms, and protein engineering.</div></div>\",\"PeriodicalId\":8979,\"journal\":{\"name\":\"Biophysical chemistry\",\"volume\":\"327 \",\"pages\":\"Article 107516\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301462225001280\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301462225001280","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Exploring impact of cold atmospheric plasma directed self-assembly of glycated bovine serum albumin
Bovine Serum Albumin (BSA) is a globular, water-soluble protein widely used as a model system due to its stability, binding capacity, and structural similarity to human serum albumin (HSA). Cold atmospheric plasma (CAP) has emerged as a versatile tool for biomolecule modification, sterilization, food preservation, and wound healing. This study explores the effects of CAP on glycated BSA, focusing on structural and self-assembly processes. SEM analysis reveals that CAP induces distinct protein self-assemblies depending on treatment duration. Thioflavin assays show increased fluorescence intensity in CAP-treated glycated BSA compared to native and glycated BSA, indicating an enhancement in β-sheet content and self-assembly. These findings offer valuable insights into CAP's role in modulating protein structures, with implications for biomaterials, disease mechanisms, and protein engineering.
期刊介绍:
Biophysical Chemistry publishes original work and reviews in the areas of chemistry and physics directly impacting biological phenomena. Quantitative analysis of the properties of biological macromolecules, biologically active molecules, macromolecular assemblies and cell components in terms of kinetics, thermodynamics, spatio-temporal organization, NMR and X-ray structural biology, as well as single-molecule detection represent a major focus of the journal. Theoretical and computational treatments of biomacromolecular systems, macromolecular interactions, regulatory control and systems biology are also of interest to the journal.