{"title":"图像匹配的尺度感知共可见区域检测","authors":"Xu Pan , Zimin Xia , Xianwei Zheng","doi":"10.1016/j.isprsjprs.2025.08.015","DOIUrl":null,"url":null,"abstract":"<div><div>Matching images with significant scale differences remains a persistent challenge in photogrammetry and remote sensing. The scale discrepancy often degrades appearance consistency and introduces uncertainty in keypoint localization. While existing methods address scale variation through scale pyramids or scale-aware training, matching under significant scale differences remains an open challenge. To overcome this, we address the scale difference issue by detecting co-visible regions between image pairs and propose <strong>SCoDe</strong> (<strong>S</strong>cale-aware <strong>Co</strong>-visible region <strong>De</strong>tector), which both identifies co-visible regions and aligns their scales for highly robust, hierarchical point correspondence matching. Specifically, SCoDe employs a novel Scale Head Attention mechanism to map and correlate features across multiple scale subspaces, and uses a learnable query to aggregate scale-aware information of both images for co-visible region detection. In this way, correspondences can be established in a coarse-to-fine hierarchy, thereby mitigating semantic and localization uncertainties. Extensive experiments on three challenging datasets demonstrate that SCoDe outperforms state-of-the-art methods, improving the precision of a modern local feature matcher by 8.41%. Notably, SCoDe shows a clear advantage when handling images with drastic scale variations. Code is publicly available at <span><span>github.com/Geo-Tell/SCoDe</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"229 ","pages":"Pages 122-137"},"PeriodicalIF":12.2000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scale-aware co-visible region detection for image matching\",\"authors\":\"Xu Pan , Zimin Xia , Xianwei Zheng\",\"doi\":\"10.1016/j.isprsjprs.2025.08.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Matching images with significant scale differences remains a persistent challenge in photogrammetry and remote sensing. The scale discrepancy often degrades appearance consistency and introduces uncertainty in keypoint localization. While existing methods address scale variation through scale pyramids or scale-aware training, matching under significant scale differences remains an open challenge. To overcome this, we address the scale difference issue by detecting co-visible regions between image pairs and propose <strong>SCoDe</strong> (<strong>S</strong>cale-aware <strong>Co</strong>-visible region <strong>De</strong>tector), which both identifies co-visible regions and aligns their scales for highly robust, hierarchical point correspondence matching. Specifically, SCoDe employs a novel Scale Head Attention mechanism to map and correlate features across multiple scale subspaces, and uses a learnable query to aggregate scale-aware information of both images for co-visible region detection. In this way, correspondences can be established in a coarse-to-fine hierarchy, thereby mitigating semantic and localization uncertainties. Extensive experiments on three challenging datasets demonstrate that SCoDe outperforms state-of-the-art methods, improving the precision of a modern local feature matcher by 8.41%. Notably, SCoDe shows a clear advantage when handling images with drastic scale variations. Code is publicly available at <span><span>github.com/Geo-Tell/SCoDe</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":50269,\"journal\":{\"name\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"volume\":\"229 \",\"pages\":\"Pages 122-137\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924271625003260\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271625003260","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Scale-aware co-visible region detection for image matching
Matching images with significant scale differences remains a persistent challenge in photogrammetry and remote sensing. The scale discrepancy often degrades appearance consistency and introduces uncertainty in keypoint localization. While existing methods address scale variation through scale pyramids or scale-aware training, matching under significant scale differences remains an open challenge. To overcome this, we address the scale difference issue by detecting co-visible regions between image pairs and propose SCoDe (Scale-aware Co-visible region Detector), which both identifies co-visible regions and aligns their scales for highly robust, hierarchical point correspondence matching. Specifically, SCoDe employs a novel Scale Head Attention mechanism to map and correlate features across multiple scale subspaces, and uses a learnable query to aggregate scale-aware information of both images for co-visible region detection. In this way, correspondences can be established in a coarse-to-fine hierarchy, thereby mitigating semantic and localization uncertainties. Extensive experiments on three challenging datasets demonstrate that SCoDe outperforms state-of-the-art methods, improving the precision of a modern local feature matcher by 8.41%. Notably, SCoDe shows a clear advantage when handling images with drastic scale variations. Code is publicly available at github.com/Geo-Tell/SCoDe.
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.