Aurélien Brun , Jakub Kolecki , Muyan Xiao , Luca Insolia , Elmar V. van der Zwan , Stéphane Guerrier , Jan Skaloud
{"title":"基于点对点匹配的运动激光扫描严格优化推广","authors":"Aurélien Brun , Jakub Kolecki , Muyan Xiao , Luca Insolia , Elmar V. van der Zwan , Stéphane Guerrier , Jan Skaloud","doi":"10.1016/j.isprsjprs.2025.08.011","DOIUrl":null,"url":null,"abstract":"<div><div>In the scope of rigorous sensor fusion in kinematic laser scanning, we present a qualitative improvement of an automated retrieval method of lidar-to-lidar 3D correspondences in terms of accuracy and speed, where correspondences are locally refined shifts derived from learning based descriptors matching. These improvements are shared through an open implementation. We evaluate their impact in three, fundamentally different laser scanning scenarios (sensors and platforms) without adaptation: airborne (helicopter), mobile (car) and handheld (without GNSS). The impact of precise correspondences improves the point cloud georeferencing/registration 2 to 10 times with respect to previously described and/or industrial standards, depending on the setup, without adaptation to a particular scenario. This represents a potential to enhance the accuracy and reliability of kinematic laser scanning in different environments, whether satellite positioning is available or not, and irrespectively of the nature of the lidars (i.e. including single-beam linear or oscillating sensors).</div></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"229 ","pages":"Pages 107-121"},"PeriodicalIF":12.2000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalization of point-to-point matching for rigorous optimization in kinematic laser scanning\",\"authors\":\"Aurélien Brun , Jakub Kolecki , Muyan Xiao , Luca Insolia , Elmar V. van der Zwan , Stéphane Guerrier , Jan Skaloud\",\"doi\":\"10.1016/j.isprsjprs.2025.08.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the scope of rigorous sensor fusion in kinematic laser scanning, we present a qualitative improvement of an automated retrieval method of lidar-to-lidar 3D correspondences in terms of accuracy and speed, where correspondences are locally refined shifts derived from learning based descriptors matching. These improvements are shared through an open implementation. We evaluate their impact in three, fundamentally different laser scanning scenarios (sensors and platforms) without adaptation: airborne (helicopter), mobile (car) and handheld (without GNSS). The impact of precise correspondences improves the point cloud georeferencing/registration 2 to 10 times with respect to previously described and/or industrial standards, depending on the setup, without adaptation to a particular scenario. This represents a potential to enhance the accuracy and reliability of kinematic laser scanning in different environments, whether satellite positioning is available or not, and irrespectively of the nature of the lidars (i.e. including single-beam linear or oscillating sensors).</div></div>\",\"PeriodicalId\":50269,\"journal\":{\"name\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"volume\":\"229 \",\"pages\":\"Pages 107-121\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924271625003235\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271625003235","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Generalization of point-to-point matching for rigorous optimization in kinematic laser scanning
In the scope of rigorous sensor fusion in kinematic laser scanning, we present a qualitative improvement of an automated retrieval method of lidar-to-lidar 3D correspondences in terms of accuracy and speed, where correspondences are locally refined shifts derived from learning based descriptors matching. These improvements are shared through an open implementation. We evaluate their impact in three, fundamentally different laser scanning scenarios (sensors and platforms) without adaptation: airborne (helicopter), mobile (car) and handheld (without GNSS). The impact of precise correspondences improves the point cloud georeferencing/registration 2 to 10 times with respect to previously described and/or industrial standards, depending on the setup, without adaptation to a particular scenario. This represents a potential to enhance the accuracy and reliability of kinematic laser scanning in different environments, whether satellite positioning is available or not, and irrespectively of the nature of the lidars (i.e. including single-beam linear or oscillating sensors).
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.