原位Fe3W3C颗粒增强铁基复合材料显微组织演化与磨损行为的关系

IF 4.7 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shuai Wang , Maosen Wang , Zhibin Zheng , Jiacheng Xu , Binbin Liu , Zhimin Ke , Akhmadjon Jumaev , Zhiqiang Fu , Kaihong Zheng
{"title":"原位Fe3W3C颗粒增强铁基复合材料显微组织演化与磨损行为的关系","authors":"Shuai Wang ,&nbsp;Maosen Wang ,&nbsp;Zhibin Zheng ,&nbsp;Jiacheng Xu ,&nbsp;Binbin Liu ,&nbsp;Zhimin Ke ,&nbsp;Akhmadjon Jumaev ,&nbsp;Zhiqiang Fu ,&nbsp;Kaihong Zheng","doi":"10.1016/j.matchemphys.2025.131461","DOIUrl":null,"url":null,"abstract":"<div><div>This study systematically investigates the microstructural characteristics, interfacial bonding mechanisms, mechanical properties, and wear behavior of Fe<sub>3</sub>W<sub>3</sub>C -reinforced high-chromium cast iron matrix composites fabricated through combined powder metallurgy and casting techniques. Microstructural analysis revealed the uniform distribution of two distinct Fe<sub>3</sub>W<sub>3</sub>C morphologies - faceted and herringbone structures - along the composite interface, formed through in-situ reaction-driven diffusion of W and C atoms. Notably, the exothermic phase transformation reaction facilitated directional growth of carbide phases within the matrix, resulting in a 11.2 % enhancement in interfacial microhardness compared to the base material. During three-body abrasive wear testing, the composite demonstrated superior wear resistance characterized by shallow surface abrasions, contrasting with the pronounced ploughing grooves and material removal observed in unreinforced high-chromium cast iron. Quantitative analysis showed an 83.3 % improvement in relative wear resistance for the composite material. These findings establish Fe<sub>3</sub>W<sub>3</sub>C as an effective reinforcement phase for metal matrix composites, demonstrating significant potential for industrial applications requiring enhanced wear resistance.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"347 ","pages":"Article 131461"},"PeriodicalIF":4.7000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relationship between microstructural evolution and wear behaviour of in-situ Fe3W3C particles reinforced iron matrix composites\",\"authors\":\"Shuai Wang ,&nbsp;Maosen Wang ,&nbsp;Zhibin Zheng ,&nbsp;Jiacheng Xu ,&nbsp;Binbin Liu ,&nbsp;Zhimin Ke ,&nbsp;Akhmadjon Jumaev ,&nbsp;Zhiqiang Fu ,&nbsp;Kaihong Zheng\",\"doi\":\"10.1016/j.matchemphys.2025.131461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study systematically investigates the microstructural characteristics, interfacial bonding mechanisms, mechanical properties, and wear behavior of Fe<sub>3</sub>W<sub>3</sub>C -reinforced high-chromium cast iron matrix composites fabricated through combined powder metallurgy and casting techniques. Microstructural analysis revealed the uniform distribution of two distinct Fe<sub>3</sub>W<sub>3</sub>C morphologies - faceted and herringbone structures - along the composite interface, formed through in-situ reaction-driven diffusion of W and C atoms. Notably, the exothermic phase transformation reaction facilitated directional growth of carbide phases within the matrix, resulting in a 11.2 % enhancement in interfacial microhardness compared to the base material. During three-body abrasive wear testing, the composite demonstrated superior wear resistance characterized by shallow surface abrasions, contrasting with the pronounced ploughing grooves and material removal observed in unreinforced high-chromium cast iron. Quantitative analysis showed an 83.3 % improvement in relative wear resistance for the composite material. These findings establish Fe<sub>3</sub>W<sub>3</sub>C as an effective reinforcement phase for metal matrix composites, demonstrating significant potential for industrial applications requiring enhanced wear resistance.</div></div>\",\"PeriodicalId\":18227,\"journal\":{\"name\":\"Materials Chemistry and Physics\",\"volume\":\"347 \",\"pages\":\"Article 131461\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Chemistry and Physics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0254058425011071\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254058425011071","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究系统地研究了粉末冶金与铸造相结合制备的Fe3W3C增强高铬铸铁基复合材料的显微组织特征、界面结合机制、力学性能和磨损行为。显微结构分析表明,在W和C原子的原位反应驱动扩散作用下,Fe3W3C沿复合界面均匀分布着两种不同的形貌——面形结构和人字形结构。值得注意的是,放热相变反应促进了基体内碳化物相的定向生长,导致界面显微硬度比母材提高了11.2%。在三体磨粒磨损测试中,复合材料表现出优异的耐磨性,其特征是表面磨损浅,与未增强的高铬铸铁形成明显的犁沟和材料去除形成对比。定量分析表明,复合材料的相对耐磨性提高了83.3%。这些发现表明,Fe3W3C是金属基复合材料的有效增强相,在需要增强耐磨性的工业应用中具有巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relationship between microstructural evolution and wear behaviour of in-situ Fe3W3C particles reinforced iron matrix composites
This study systematically investigates the microstructural characteristics, interfacial bonding mechanisms, mechanical properties, and wear behavior of Fe3W3C -reinforced high-chromium cast iron matrix composites fabricated through combined powder metallurgy and casting techniques. Microstructural analysis revealed the uniform distribution of two distinct Fe3W3C morphologies - faceted and herringbone structures - along the composite interface, formed through in-situ reaction-driven diffusion of W and C atoms. Notably, the exothermic phase transformation reaction facilitated directional growth of carbide phases within the matrix, resulting in a 11.2 % enhancement in interfacial microhardness compared to the base material. During three-body abrasive wear testing, the composite demonstrated superior wear resistance characterized by shallow surface abrasions, contrasting with the pronounced ploughing grooves and material removal observed in unreinforced high-chromium cast iron. Quantitative analysis showed an 83.3 % improvement in relative wear resistance for the composite material. These findings establish Fe3W3C as an effective reinforcement phase for metal matrix composites, demonstrating significant potential for industrial applications requiring enhanced wear resistance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Chemistry and Physics
Materials Chemistry and Physics 工程技术-材料科学:综合
CiteScore
8.70
自引率
4.30%
发文量
1515
审稿时长
69 days
期刊介绍: Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信