领域级零采样推荐的三重对比学习框架

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Huanyuan Zhou, Xue Chen, Wenjuan Cha, Ruonan Gu, Peng Wang
{"title":"领域级零采样推荐的三重对比学习框架","authors":"Huanyuan Zhou,&nbsp;Xue Chen,&nbsp;Wenjuan Cha,&nbsp;Ruonan Gu,&nbsp;Peng Wang","doi":"10.1016/j.neucom.2025.131354","DOIUrl":null,"url":null,"abstract":"<div><div>Domain-level zero-shot recommendation (DZSR) poses a significant challenge in recommender systems (RS), representing a cold-start scenario where the domain completely lacks interaction history. Previous works leveraged universal knowledge from item content to bridge domains, transferring user preferences from the source domain to the target domain. However, previous works relied solely on item content similarity for DZSR, while overlooking both co-interaction relevance and topic relevance. These limitations not only restrict the exploration of user interests, but also further hinder the transfer of user preferences across domains. To address limitations, this paper proposes a <strong>T</strong>riple <strong>C</strong>ontrastive <strong>L</strong>earning <strong>F</strong>ramework (TCLF) to perform three tailored alignments. Specifically, we first design a self-contrastive learning to align the embeddings generated from item descriptions and knowledge graph triples of the same item. Then, we measure the co-interaction relevance from both the user and item perspectives, and align co-interacted source items by a source-domain contrastive learning. Finally, we measure the topic relevance in an indirect manner, and design a cross-domain contrastive learning to align topic-relevant source and target items. Extensive experiments on four public datasets demonstrate the superiority of TCLF for DZSR tasks compared to state-of-the-art baselines.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"654 ","pages":"Article 131354"},"PeriodicalIF":6.5000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Triple contrastive learning framework for domain-level zero-shot recommendation\",\"authors\":\"Huanyuan Zhou,&nbsp;Xue Chen,&nbsp;Wenjuan Cha,&nbsp;Ruonan Gu,&nbsp;Peng Wang\",\"doi\":\"10.1016/j.neucom.2025.131354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Domain-level zero-shot recommendation (DZSR) poses a significant challenge in recommender systems (RS), representing a cold-start scenario where the domain completely lacks interaction history. Previous works leveraged universal knowledge from item content to bridge domains, transferring user preferences from the source domain to the target domain. However, previous works relied solely on item content similarity for DZSR, while overlooking both co-interaction relevance and topic relevance. These limitations not only restrict the exploration of user interests, but also further hinder the transfer of user preferences across domains. To address limitations, this paper proposes a <strong>T</strong>riple <strong>C</strong>ontrastive <strong>L</strong>earning <strong>F</strong>ramework (TCLF) to perform three tailored alignments. Specifically, we first design a self-contrastive learning to align the embeddings generated from item descriptions and knowledge graph triples of the same item. Then, we measure the co-interaction relevance from both the user and item perspectives, and align co-interacted source items by a source-domain contrastive learning. Finally, we measure the topic relevance in an indirect manner, and design a cross-domain contrastive learning to align topic-relevant source and target items. Extensive experiments on four public datasets demonstrate the superiority of TCLF for DZSR tasks compared to state-of-the-art baselines.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"654 \",\"pages\":\"Article 131354\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231225020260\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225020260","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

领域级零次推荐(DZSR)在推荐系统(RS)中提出了一个重大挑战,它代表了一种冷启动场景,即领域完全缺乏交互历史。以前的工作利用了从项目内容到桥接领域的普遍知识,将用户偏好从源领域转移到目标领域。然而,以往的研究仅仅依赖于DZSR的项目内容相似度,而忽略了协同相关性和话题相关性。这些限制不仅限制了对用户兴趣的探索,而且进一步阻碍了用户偏好跨领域的转移。为了解决局限性,本文提出了一个三重对比学习框架(TCLF)来执行三个量身定制的对齐。具体来说,我们首先设计了一个自对比学习来对齐由相同项目的项目描述和知识图三元组生成的嵌入。然后,我们从用户和项目的角度度量协同交互相关性,并通过源域对比学习对协同交互的源项目进行对齐。最后,我们以间接方式测量主题相关性,并设计跨领域对比学习来对齐主题相关的源项目和目标项目。在四个公共数据集上进行的大量实验表明,与最先进的基线相比,TCLF在DZSR任务中的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Triple contrastive learning framework for domain-level zero-shot recommendation
Domain-level zero-shot recommendation (DZSR) poses a significant challenge in recommender systems (RS), representing a cold-start scenario where the domain completely lacks interaction history. Previous works leveraged universal knowledge from item content to bridge domains, transferring user preferences from the source domain to the target domain. However, previous works relied solely on item content similarity for DZSR, while overlooking both co-interaction relevance and topic relevance. These limitations not only restrict the exploration of user interests, but also further hinder the transfer of user preferences across domains. To address limitations, this paper proposes a Triple Contrastive Learning Framework (TCLF) to perform three tailored alignments. Specifically, we first design a self-contrastive learning to align the embeddings generated from item descriptions and knowledge graph triples of the same item. Then, we measure the co-interaction relevance from both the user and item perspectives, and align co-interacted source items by a source-domain contrastive learning. Finally, we measure the topic relevance in an indirect manner, and design a cross-domain contrastive learning to align topic-relevant source and target items. Extensive experiments on four public datasets demonstrate the superiority of TCLF for DZSR tasks compared to state-of-the-art baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信