Findme-scholar:一个上下文研究者推荐系统,用于使用自适应主题兴趣领域建模来加强研究合作

IF 1.9 Q2 MULTIDISCIPLINARY SCIENCES
MethodsX Pub Date : 2025-08-24 DOI:10.1016/j.mex.2025.103583
Ary Mazharuddin Shiddiqi , Moch. Nafkhan Alzamzami , Ilham Gurat Adillion , Mohammad Idris Arif Budiman , Ricardo Supriyanto , Muhammad Machmud
{"title":"Findme-scholar:一个上下文研究者推荐系统,用于使用自适应主题兴趣领域建模来加强研究合作","authors":"Ary Mazharuddin Shiddiqi ,&nbsp;Moch. Nafkhan Alzamzami ,&nbsp;Ilham Gurat Adillion ,&nbsp;Mohammad Idris Arif Budiman ,&nbsp;Ricardo Supriyanto ,&nbsp;Muhammad Machmud","doi":"10.1016/j.mex.2025.103583","DOIUrl":null,"url":null,"abstract":"<div><div>Identifying potential research collaborators with aligned expertise and complementary interests remains a persistent challenge, particularly in multidisciplinary and large-scale academic environments. This paper introduces Findme-Scholar, a contextual researcher recommender system aimed at enhancing research collaboration through adaptive topic interest area modelling. The system dynamically captures researchers' evolving thematic interests by analyzing publication metadata and semantic content to provide context-aware recommendations that surpass traditional static profile matching approaches. Our method successfully recommended researchers without prior co-authorship links to the target individual, demonstrating its ability to identify potential collaborators beyond existing networks. This result reflects the method’s effectiveness in capturing thematic and contextual similarities to discover relevant yet previously unconnected researchers.<ul><li><span>•</span><span><div>Findme-Scholar models evolving research interests for better collaboration.</div></span></li><li><span>•</span><span><div>Recommends collaborators beyond existing co-authorship networks.</div></span></li><li><span>•</span><span><div>Uses semantic and metadata analysis for context-aware suggestions.</div></span></li></ul></div></div>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":"15 ","pages":"Article 103583"},"PeriodicalIF":1.9000,"publicationDate":"2025-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Findme-scholar: a contextual researcher recommender system for enhancing research collaboration using adaptive topic interest area modelling\",\"authors\":\"Ary Mazharuddin Shiddiqi ,&nbsp;Moch. Nafkhan Alzamzami ,&nbsp;Ilham Gurat Adillion ,&nbsp;Mohammad Idris Arif Budiman ,&nbsp;Ricardo Supriyanto ,&nbsp;Muhammad Machmud\",\"doi\":\"10.1016/j.mex.2025.103583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Identifying potential research collaborators with aligned expertise and complementary interests remains a persistent challenge, particularly in multidisciplinary and large-scale academic environments. This paper introduces Findme-Scholar, a contextual researcher recommender system aimed at enhancing research collaboration through adaptive topic interest area modelling. The system dynamically captures researchers' evolving thematic interests by analyzing publication metadata and semantic content to provide context-aware recommendations that surpass traditional static profile matching approaches. Our method successfully recommended researchers without prior co-authorship links to the target individual, demonstrating its ability to identify potential collaborators beyond existing networks. This result reflects the method’s effectiveness in capturing thematic and contextual similarities to discover relevant yet previously unconnected researchers.<ul><li><span>•</span><span><div>Findme-Scholar models evolving research interests for better collaboration.</div></span></li><li><span>•</span><span><div>Recommends collaborators beyond existing co-authorship networks.</div></span></li><li><span>•</span><span><div>Uses semantic and metadata analysis for context-aware suggestions.</div></span></li></ul></div></div>\",\"PeriodicalId\":18446,\"journal\":{\"name\":\"MethodsX\",\"volume\":\"15 \",\"pages\":\"Article 103583\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MethodsX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215016125004273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215016125004273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

确定具有一致专业知识和互补兴趣的潜在研究合作者仍然是一个持续的挑战,特别是在多学科和大规模的学术环境中。本文介绍了Findme-Scholar,一个情境研究者推荐系统,旨在通过自适应主题兴趣领域建模来加强研究合作。该系统通过分析出版物元数据和语义内容来动态捕获研究人员不断发展的主题兴趣,从而提供超越传统静态概要匹配方法的上下文感知推荐。我们的方法成功地推荐了与目标个体没有合作关系的研究人员,证明了它在现有网络之外识别潜在合作者的能力。这一结果反映了该方法在捕捉主题和上下文相似性以发现相关但以前未连接的研究人员方面的有效性。•Findme-Scholar对不断发展的研究兴趣进行建模,以实现更好的合作。•推荐现有合作伙伴网络之外的合作者。•使用语义和元数据分析上下文感知的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Findme-scholar: a contextual researcher recommender system for enhancing research collaboration using adaptive topic interest area modelling

Findme-scholar: a contextual researcher recommender system for enhancing research collaboration using adaptive topic interest area modelling
Identifying potential research collaborators with aligned expertise and complementary interests remains a persistent challenge, particularly in multidisciplinary and large-scale academic environments. This paper introduces Findme-Scholar, a contextual researcher recommender system aimed at enhancing research collaboration through adaptive topic interest area modelling. The system dynamically captures researchers' evolving thematic interests by analyzing publication metadata and semantic content to provide context-aware recommendations that surpass traditional static profile matching approaches. Our method successfully recommended researchers without prior co-authorship links to the target individual, demonstrating its ability to identify potential collaborators beyond existing networks. This result reflects the method’s effectiveness in capturing thematic and contextual similarities to discover relevant yet previously unconnected researchers.
  • Findme-Scholar models evolving research interests for better collaboration.
  • Recommends collaborators beyond existing co-authorship networks.
  • Uses semantic and metadata analysis for context-aware suggestions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
MethodsX
MethodsX Health Professions-Medical Laboratory Technology
CiteScore
3.60
自引率
5.30%
发文量
314
审稿时长
7 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信