基于刚柔不匹配硬段和“列车耦合机制”的可重复使用超强超分子聚氨酯-尿素弹性体

IF 5.2 1区 化学 Q1 POLYMER SCIENCE
Xucong Chen, Yuting Tian, Min Lin, Dandan Zhu* and Xinling Wang*, 
{"title":"基于刚柔不匹配硬段和“列车耦合机制”的可重复使用超强超分子聚氨酯-尿素弹性体","authors":"Xucong Chen,&nbsp;Yuting Tian,&nbsp;Min Lin,&nbsp;Dandan Zhu* and Xinling Wang*,&nbsp;","doi":"10.1021/acs.macromol.5c01718","DOIUrl":null,"url":null,"abstract":"<p >Supramolecular interactions have enabled the development of high-strength and tough polyurethane elastomers with exceptional mechanical properties and functionality. Herein, we report a supramolecular polyurethane-urea (PUU) elastomer engineered through rigid-flexible segmented hydrogen bonding and a biomimetic “train coupling mechanism”, achieving both ultrahigh strength and facile recyclability. By leveraging mismatched rigid-flexible supramolecular interactions between adipic dihydrazide (AD H-bonding) and 2-ureido-4[H]-pyrimidinone (UPy H-bonding) hard segments, the elastomer demonstrated enhanced toughness and energy dissipation. This work provided an in-depth analysis of AD and UPy H-bonding, elucidating their respective roles in the mechanical and dynamic properties of the PUUs. The sample PUU-AD-5UP exhibits outstanding tensile strength (64.4 ± 5.6 MPa) and toughness (700 ± 59 MJ·m<sup>–3</sup>). Owing to the dynamic UPy “couplers”, the as-prepared material enables room-temperature self-healing and ethanol-assisted recycling capability with 95% efficiency of tensile strength. Furthermore, an ion-conductive PUU-AD-5UP (ICPUU-AD-5UP) composite was prepared, achieving a good combination of high tensile strength (28 MPa), ionic conductivity, and recyclability. This supramolecular design strategy provides valuable insights into developing high-performance, reusable flexible electronic skins.</p>","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"58 16","pages":"8777–8785"},"PeriodicalIF":5.2000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reusable Ultratough Supramolecular Polyurethane-Urea Elastomer via Rigid-Flexible Mismatched Hard Segments and a “Train Coupling Mechanism”\",\"authors\":\"Xucong Chen,&nbsp;Yuting Tian,&nbsp;Min Lin,&nbsp;Dandan Zhu* and Xinling Wang*,&nbsp;\",\"doi\":\"10.1021/acs.macromol.5c01718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Supramolecular interactions have enabled the development of high-strength and tough polyurethane elastomers with exceptional mechanical properties and functionality. Herein, we report a supramolecular polyurethane-urea (PUU) elastomer engineered through rigid-flexible segmented hydrogen bonding and a biomimetic “train coupling mechanism”, achieving both ultrahigh strength and facile recyclability. By leveraging mismatched rigid-flexible supramolecular interactions between adipic dihydrazide (AD H-bonding) and 2-ureido-4[H]-pyrimidinone (UPy H-bonding) hard segments, the elastomer demonstrated enhanced toughness and energy dissipation. This work provided an in-depth analysis of AD and UPy H-bonding, elucidating their respective roles in the mechanical and dynamic properties of the PUUs. The sample PUU-AD-5UP exhibits outstanding tensile strength (64.4 ± 5.6 MPa) and toughness (700 ± 59 MJ·m<sup>–3</sup>). Owing to the dynamic UPy “couplers”, the as-prepared material enables room-temperature self-healing and ethanol-assisted recycling capability with 95% efficiency of tensile strength. Furthermore, an ion-conductive PUU-AD-5UP (ICPUU-AD-5UP) composite was prepared, achieving a good combination of high tensile strength (28 MPa), ionic conductivity, and recyclability. This supramolecular design strategy provides valuable insights into developing high-performance, reusable flexible electronic skins.</p>\",\"PeriodicalId\":51,\"journal\":{\"name\":\"Macromolecules\",\"volume\":\"58 16\",\"pages\":\"8777–8785\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.macromol.5c01718\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.macromol.5c01718","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

超分子相互作用使高强度和韧性聚氨酯弹性体的发展具有卓越的机械性能和功能。在此,我们报道了一种超分子聚氨酯-尿素(PUU)弹性体,通过刚性-柔性分段氢键和仿生“列车耦合机制”进行工程设计,实现了超高强度和易于回收利用。通过利用己二酰二肼(AD H键)和2-脲-4[H]-嘧啶酮(UPy H键)硬段之间不匹配的刚柔超分子相互作用,弹性体表现出增强的韧性和能量耗散。本文深入分析了AD和UPy的氢键,阐明了它们在puu的力学和动力学性能中的作用。样品PUU-AD-5UP具有优异的抗拉强度(64.4±5.6 MPa)和韧性(700±59 MJ·m-3)。由于动态UPy“耦合器”,制备的材料具有室温自愈和乙醇辅助回收能力,抗拉强度效率为95%。制备了离子导电PUU-AD-5UP (ICPUU-AD-5UP)复合材料,具有较高的抗拉强度(28 MPa)、离子电导率和可回收性。这种超分子设计策略为开发高性能、可重复使用的柔性电子皮肤提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Reusable Ultratough Supramolecular Polyurethane-Urea Elastomer via Rigid-Flexible Mismatched Hard Segments and a “Train Coupling Mechanism”

Reusable Ultratough Supramolecular Polyurethane-Urea Elastomer via Rigid-Flexible Mismatched Hard Segments and a “Train Coupling Mechanism”

Supramolecular interactions have enabled the development of high-strength and tough polyurethane elastomers with exceptional mechanical properties and functionality. Herein, we report a supramolecular polyurethane-urea (PUU) elastomer engineered through rigid-flexible segmented hydrogen bonding and a biomimetic “train coupling mechanism”, achieving both ultrahigh strength and facile recyclability. By leveraging mismatched rigid-flexible supramolecular interactions between adipic dihydrazide (AD H-bonding) and 2-ureido-4[H]-pyrimidinone (UPy H-bonding) hard segments, the elastomer demonstrated enhanced toughness and energy dissipation. This work provided an in-depth analysis of AD and UPy H-bonding, elucidating their respective roles in the mechanical and dynamic properties of the PUUs. The sample PUU-AD-5UP exhibits outstanding tensile strength (64.4 ± 5.6 MPa) and toughness (700 ± 59 MJ·m–3). Owing to the dynamic UPy “couplers”, the as-prepared material enables room-temperature self-healing and ethanol-assisted recycling capability with 95% efficiency of tensile strength. Furthermore, an ion-conductive PUU-AD-5UP (ICPUU-AD-5UP) composite was prepared, achieving a good combination of high tensile strength (28 MPa), ionic conductivity, and recyclability. This supramolecular design strategy provides valuable insights into developing high-performance, reusable flexible electronic skins.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecules
Macromolecules 工程技术-高分子科学
CiteScore
9.30
自引率
16.40%
发文量
942
审稿时长
2 months
期刊介绍: Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信