用于抽水蓄能发电机定子和转子小目标缺陷检测的轻量级DETR

IF 1.2 Q3 AUTOMATION & CONTROL SYSTEMS
Yang You, Zhimeng Chen, Jian Qiao, Huan Liu, Jing Fang, Jie Luo, Jiaxin Wei, Jiarong Xu
{"title":"用于抽水蓄能发电机定子和转子小目标缺陷检测的轻量级DETR","authors":"Yang You,&nbsp;Zhimeng Chen,&nbsp;Jian Qiao,&nbsp;Huan Liu,&nbsp;Jing Fang,&nbsp;Jie Luo,&nbsp;Jiaxin Wei,&nbsp;Jiarong Xu","doi":"10.1049/csy2.70022","DOIUrl":null,"url":null,"abstract":"<p>Real-time detection of micro-defects in pumped storage generator stators and rotors remains challenging due to small-target obscurity and edge deployment constraints. This paper proposes EdgeFault-detection transformer (DETR), a lightweight transformer model that integrates three innovations: (1) dynamic geometric-photometric augmentation for robustness, (2) a FasterNet backbone with Partial Convolution (PConv) that reduces the number of parameters by 40% (from 20 × 10<sup>6</sup> to 12 × 10<sup>6</sup>), and (3) cross-scale small-object head enhancing defect localisation. Experiments on 8763 industrial images demonstrate 75.38% [email protected] (+17.25% over RT-DETR) and 49.3% mAP<sub>small</sub> (+42.9% from baseline). The model achieves 22 FPS on NVIDIA RTX A4000 GPUs (640 × 640 resolution), validating real-time industrial applicability. Strategic computation allocation increases GFLOPs (giga floating-point operations) by 16.4% (from 58.6 to 68.2) to prioritise safety–critical precision, justifying the trade-off for detecting high-risk anomalies (e.g., insulation cracks).</p>","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":"7 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.70022","citationCount":"0","resultStr":"{\"title\":\"Lightweight DETR for Small-Target Defect Detection in Stators and Rotors of Pumped Storage Generators\",\"authors\":\"Yang You,&nbsp;Zhimeng Chen,&nbsp;Jian Qiao,&nbsp;Huan Liu,&nbsp;Jing Fang,&nbsp;Jie Luo,&nbsp;Jiaxin Wei,&nbsp;Jiarong Xu\",\"doi\":\"10.1049/csy2.70022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Real-time detection of micro-defects in pumped storage generator stators and rotors remains challenging due to small-target obscurity and edge deployment constraints. This paper proposes EdgeFault-detection transformer (DETR), a lightweight transformer model that integrates three innovations: (1) dynamic geometric-photometric augmentation for robustness, (2) a FasterNet backbone with Partial Convolution (PConv) that reduces the number of parameters by 40% (from 20 × 10<sup>6</sup> to 12 × 10<sup>6</sup>), and (3) cross-scale small-object head enhancing defect localisation. Experiments on 8763 industrial images demonstrate 75.38% [email protected] (+17.25% over RT-DETR) and 49.3% mAP<sub>small</sub> (+42.9% from baseline). The model achieves 22 FPS on NVIDIA RTX A4000 GPUs (640 × 640 resolution), validating real-time industrial applicability. Strategic computation allocation increases GFLOPs (giga floating-point operations) by 16.4% (from 58.6 to 68.2) to prioritise safety–critical precision, justifying the trade-off for detecting high-risk anomalies (e.g., insulation cracks).</p>\",\"PeriodicalId\":34110,\"journal\":{\"name\":\"IET Cybersystems and Robotics\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.70022\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Cybersystems and Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/csy2.70022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Cybersystems and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/csy2.70022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

由于小目标模糊和边缘部署的限制,实时检测抽水蓄能发电机定子和转子的微缺陷仍然具有挑战性。本文提出了边缘故障检测变压器(DETR),这是一种轻量级变压器模型,它集成了三个创新:(1)动态几何光度增强增强鲁棒性;(2)带有部分卷积(PConv)的FasterNet骨干,将参数数量减少了40%(从20 × 106减少到12 × 106);(3)跨尺度小目标头部增强缺陷定位。在8763张工业图像上的实验表明,75.38% [email protected](比RT-DETR +17.25%)和49.3% mAPsmall(比基线+42.9%)。该模型在NVIDIA RTX A4000 gpu (640 × 640分辨率)上实现了22 FPS,验证了实时工业适用性。战略计算分配将GFLOPs(千兆浮点运算)提高16.4%(从58.6提高到68.2),以优先考虑安全关键精度,证明检测高风险异常(例如绝缘裂缝)的权衡是合理的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Lightweight DETR for Small-Target Defect Detection in Stators and Rotors of Pumped Storage Generators

Lightweight DETR for Small-Target Defect Detection in Stators and Rotors of Pumped Storage Generators

Lightweight DETR for Small-Target Defect Detection in Stators and Rotors of Pumped Storage Generators

Lightweight DETR for Small-Target Defect Detection in Stators and Rotors of Pumped Storage Generators

Lightweight DETR for Small-Target Defect Detection in Stators and Rotors of Pumped Storage Generators

Real-time detection of micro-defects in pumped storage generator stators and rotors remains challenging due to small-target obscurity and edge deployment constraints. This paper proposes EdgeFault-detection transformer (DETR), a lightweight transformer model that integrates three innovations: (1) dynamic geometric-photometric augmentation for robustness, (2) a FasterNet backbone with Partial Convolution (PConv) that reduces the number of parameters by 40% (from 20 × 106 to 12 × 106), and (3) cross-scale small-object head enhancing defect localisation. Experiments on 8763 industrial images demonstrate 75.38% [email protected] (+17.25% over RT-DETR) and 49.3% mAPsmall (+42.9% from baseline). The model achieves 22 FPS on NVIDIA RTX A4000 GPUs (640 × 640 resolution), validating real-time industrial applicability. Strategic computation allocation increases GFLOPs (giga floating-point operations) by 16.4% (from 58.6 to 68.2) to prioritise safety–critical precision, justifying the trade-off for detecting high-risk anomalies (e.g., insulation cracks).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Cybersystems and Robotics
IET Cybersystems and Robotics Computer Science-Information Systems
CiteScore
3.70
自引率
0.00%
发文量
31
审稿时长
34 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信