{"title":"与重力非最小耦合的翻转旋转轴子:重子生成和暗物质","authors":"Chao Chen, Suruj Jyoti Das, Konstantinos Dimopoulos, Anish Ghoshal","doi":"10.1140/epjc/s10052-025-14586-z","DOIUrl":null,"url":null,"abstract":"<div><p>We demonstrate that the co-genesis of baryon asymmetry and dark matter can be achieved through the rotation of an axion-like particle (but not the QCD axion), driven by a flip in the vacuum manifold’s direction at the end of inflation. This can occur if the axion has a periodic non-minimal coupling to gravity, while preserving the discrete shift symmetry. In non-oscillating inflation models, after inflation there is typically a period of kination (with <span>\\(w = 1\\)</span>). In this case, it is shown that the vacuum manifold of the axion is flipped and the axion begins rotating in field space, because it can slide across the decreasing potential barrier as in Ricci reheating. Such a rotating axion can generate the baryon asymmetry of the Universe through spontaneous baryogenesis, while at later epochs it can oscillate as dark matter. The period of kination makes the primordial gravitational waves (GW) generated during inflation sharply blue-tilted which constrains the parameter space due to GW overproduction, while being testable by next generation CMB experiments. As a concrete example, we show that such a cogenesis of baryon asymmetry and dark matter can be realized for the axion as the Majoron in the Type-I seesaw setup, predicting mass ranges for the Majoron below sub eVs, with right-handed neutrino mass above <span>\\(\\mathcal {O}(10^{8})\\)</span> GeV. We also show that in order to avoid fragmentation of the axion condensate during the rotation, we require the non-minimal coupling <span>\\(\\xi \\sim (f/m_P)^2 \\)</span> or somewhat larger, where <i>f</i> is the axion decay constant.\n</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 8","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-14586-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Flipped rotating axion non-minimally coupled to gravity: baryogenesis and dark matter\",\"authors\":\"Chao Chen, Suruj Jyoti Das, Konstantinos Dimopoulos, Anish Ghoshal\",\"doi\":\"10.1140/epjc/s10052-025-14586-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We demonstrate that the co-genesis of baryon asymmetry and dark matter can be achieved through the rotation of an axion-like particle (but not the QCD axion), driven by a flip in the vacuum manifold’s direction at the end of inflation. This can occur if the axion has a periodic non-minimal coupling to gravity, while preserving the discrete shift symmetry. In non-oscillating inflation models, after inflation there is typically a period of kination (with <span>\\\\(w = 1\\\\)</span>). In this case, it is shown that the vacuum manifold of the axion is flipped and the axion begins rotating in field space, because it can slide across the decreasing potential barrier as in Ricci reheating. Such a rotating axion can generate the baryon asymmetry of the Universe through spontaneous baryogenesis, while at later epochs it can oscillate as dark matter. The period of kination makes the primordial gravitational waves (GW) generated during inflation sharply blue-tilted which constrains the parameter space due to GW overproduction, while being testable by next generation CMB experiments. As a concrete example, we show that such a cogenesis of baryon asymmetry and dark matter can be realized for the axion as the Majoron in the Type-I seesaw setup, predicting mass ranges for the Majoron below sub eVs, with right-handed neutrino mass above <span>\\\\(\\\\mathcal {O}(10^{8})\\\\)</span> GeV. We also show that in order to avoid fragmentation of the axion condensate during the rotation, we require the non-minimal coupling <span>\\\\(\\\\xi \\\\sim (f/m_P)^2 \\\\)</span> or somewhat larger, where <i>f</i> is the axion decay constant.\\n</p></div>\",\"PeriodicalId\":788,\"journal\":{\"name\":\"The European Physical Journal C\",\"volume\":\"85 8\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-14586-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal C\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjc/s10052-025-14586-z\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-025-14586-z","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
Flipped rotating axion non-minimally coupled to gravity: baryogenesis and dark matter
We demonstrate that the co-genesis of baryon asymmetry and dark matter can be achieved through the rotation of an axion-like particle (but not the QCD axion), driven by a flip in the vacuum manifold’s direction at the end of inflation. This can occur if the axion has a periodic non-minimal coupling to gravity, while preserving the discrete shift symmetry. In non-oscillating inflation models, after inflation there is typically a period of kination (with \(w = 1\)). In this case, it is shown that the vacuum manifold of the axion is flipped and the axion begins rotating in field space, because it can slide across the decreasing potential barrier as in Ricci reheating. Such a rotating axion can generate the baryon asymmetry of the Universe through spontaneous baryogenesis, while at later epochs it can oscillate as dark matter. The period of kination makes the primordial gravitational waves (GW) generated during inflation sharply blue-tilted which constrains the parameter space due to GW overproduction, while being testable by next generation CMB experiments. As a concrete example, we show that such a cogenesis of baryon asymmetry and dark matter can be realized for the axion as the Majoron in the Type-I seesaw setup, predicting mass ranges for the Majoron below sub eVs, with right-handed neutrino mass above \(\mathcal {O}(10^{8})\) GeV. We also show that in order to avoid fragmentation of the axion condensate during the rotation, we require the non-minimal coupling \(\xi \sim (f/m_P)^2 \) or somewhat larger, where f is the axion decay constant.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.