Jesús García Pérez , Leonardo Sanches , Amin Ghadami , Bogdan I. Epureanu , Guilhem Michon
{"title":"后颤振控制中扑翼- nes被动吸收器的实验参数研究","authors":"Jesús García Pérez , Leonardo Sanches , Amin Ghadami , Bogdan I. Epureanu , Guilhem Michon","doi":"10.1016/j.jfluidstructs.2025.104405","DOIUrl":null,"url":null,"abstract":"<div><div>Aeroelastic instabilities present significant challenges in aircraft design, particularly for novel designs leveraging high aspect ratios and flexible wings to enhance aerodynamic efficiency. These advancements, seen in both high-altitude, high-endurance aircraft and commercial airliners, introduce complexities such as low resonant frequencies and increased susceptibility to aeroelastic instabilities, particularly flutter, which can lead to structural failure. The current certification process requires aircraft to be free from flutter within the operational flight envelope and beyond it, typically with a safety margin of 15% Various strategies have been explored to mitigate flutter and expand the flight envelope. In this work, passive vibration mitigation is applied to an experimental aeroelastic system exhibiting complex aeroelastic instabilities in a wind tunnel. The system consists of a rigid wing mounted on elastic supports with a flap that spans one-third of the wingspan and acts as an innovative nonlinear passive absorber. The setup includes pitch stiffness nonlinearity, which contributes to complex aeroelastic responses such as subcritical flutter and limit cycle oscillations. This solution benefits from aerodynamic damping and adds a very small amount of mass to the system. The main focus of this paper is to assess the influence of flap-NES parameters on aeroelastic behavior and to explore its potential impact on different wing configurations. Results show a delay in the onset of instability up to 34% in airspeed, a suppression of large amplitude vibrations due to stall flutter, and a removal of subcritical behavior.</div></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":"138 ","pages":"Article 104405"},"PeriodicalIF":3.5000,"publicationDate":"2025-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental parametric study of a flap-NES passive absorber for post-flutter control\",\"authors\":\"Jesús García Pérez , Leonardo Sanches , Amin Ghadami , Bogdan I. Epureanu , Guilhem Michon\",\"doi\":\"10.1016/j.jfluidstructs.2025.104405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Aeroelastic instabilities present significant challenges in aircraft design, particularly for novel designs leveraging high aspect ratios and flexible wings to enhance aerodynamic efficiency. These advancements, seen in both high-altitude, high-endurance aircraft and commercial airliners, introduce complexities such as low resonant frequencies and increased susceptibility to aeroelastic instabilities, particularly flutter, which can lead to structural failure. The current certification process requires aircraft to be free from flutter within the operational flight envelope and beyond it, typically with a safety margin of 15% Various strategies have been explored to mitigate flutter and expand the flight envelope. In this work, passive vibration mitigation is applied to an experimental aeroelastic system exhibiting complex aeroelastic instabilities in a wind tunnel. The system consists of a rigid wing mounted on elastic supports with a flap that spans one-third of the wingspan and acts as an innovative nonlinear passive absorber. The setup includes pitch stiffness nonlinearity, which contributes to complex aeroelastic responses such as subcritical flutter and limit cycle oscillations. This solution benefits from aerodynamic damping and adds a very small amount of mass to the system. The main focus of this paper is to assess the influence of flap-NES parameters on aeroelastic behavior and to explore its potential impact on different wing configurations. Results show a delay in the onset of instability up to 34% in airspeed, a suppression of large amplitude vibrations due to stall flutter, and a removal of subcritical behavior.</div></div>\",\"PeriodicalId\":54834,\"journal\":{\"name\":\"Journal of Fluids and Structures\",\"volume\":\"138 \",\"pages\":\"Article 104405\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluids and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0889974625001409\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889974625001409","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Experimental parametric study of a flap-NES passive absorber for post-flutter control
Aeroelastic instabilities present significant challenges in aircraft design, particularly for novel designs leveraging high aspect ratios and flexible wings to enhance aerodynamic efficiency. These advancements, seen in both high-altitude, high-endurance aircraft and commercial airliners, introduce complexities such as low resonant frequencies and increased susceptibility to aeroelastic instabilities, particularly flutter, which can lead to structural failure. The current certification process requires aircraft to be free from flutter within the operational flight envelope and beyond it, typically with a safety margin of 15% Various strategies have been explored to mitigate flutter and expand the flight envelope. In this work, passive vibration mitigation is applied to an experimental aeroelastic system exhibiting complex aeroelastic instabilities in a wind tunnel. The system consists of a rigid wing mounted on elastic supports with a flap that spans one-third of the wingspan and acts as an innovative nonlinear passive absorber. The setup includes pitch stiffness nonlinearity, which contributes to complex aeroelastic responses such as subcritical flutter and limit cycle oscillations. This solution benefits from aerodynamic damping and adds a very small amount of mass to the system. The main focus of this paper is to assess the influence of flap-NES parameters on aeroelastic behavior and to explore its potential impact on different wing configurations. Results show a delay in the onset of instability up to 34% in airspeed, a suppression of large amplitude vibrations due to stall flutter, and a removal of subcritical behavior.
期刊介绍:
The Journal of Fluids and Structures serves as a focal point and a forum for the exchange of ideas, for the many kinds of specialists and practitioners concerned with fluid–structure interactions and the dynamics of systems related thereto, in any field. One of its aims is to foster the cross–fertilization of ideas, methods and techniques in the various disciplines involved.
The journal publishes papers that present original and significant contributions on all aspects of the mechanical interactions between fluids and solids, regardless of scale.