欺骗语音分类使用深度说话者嵌入和机器学习模型

IF 4.5 Q2 COMPUTER SCIENCE, THEORY & METHODS
Array Pub Date : 2025-08-21 DOI:10.1016/j.array.2025.100494
Mohammed Hamzah Alsalihi , Dávid Sztahó
{"title":"欺骗语音分类使用深度说话者嵌入和机器学习模型","authors":"Mohammed Hamzah Alsalihi ,&nbsp;Dávid Sztahó","doi":"10.1016/j.array.2025.100494","DOIUrl":null,"url":null,"abstract":"<div><div>This paper examines the effectiveness of deep speaker embeddings combined with machine learning classifiers for spoof speech detection. We leverage four state-of-the-art speaker embedding models: X-vector, Emphasized channel attention, propagation and aggregation in time delay neural network (ECAPA-TDNN), Residual Network-Time Delay Neural Network (ResNet-TDNN), and WavLM, used in both pre-trained and fine-tuned forms, to extract speaker-discriminative features from speech signals. These embeddings are used with five classifiers: Support Vector Machine, Random Forest, Multi-Layer Perceptron, Logistic regression, and XGBoost, to classify if a speech sample is a deepfake or not. We apply multiple feature scaling strategies and assess performance using standard metrics as well as the receiver operating characteristic (ROC) curve. Our results show that fine-tuned ECAPA-TDNN embeddings consistently outperform others across classifiers. This work contributes a robust pipeline for automated spoof speech classification, serving as a critical preprocessing step for other systems like forensic voice comparison.</div></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":"27 ","pages":"Article 100494"},"PeriodicalIF":4.5000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spoof speech classification using deep speaker embeddings and machine learning models\",\"authors\":\"Mohammed Hamzah Alsalihi ,&nbsp;Dávid Sztahó\",\"doi\":\"10.1016/j.array.2025.100494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper examines the effectiveness of deep speaker embeddings combined with machine learning classifiers for spoof speech detection. We leverage four state-of-the-art speaker embedding models: X-vector, Emphasized channel attention, propagation and aggregation in time delay neural network (ECAPA-TDNN), Residual Network-Time Delay Neural Network (ResNet-TDNN), and WavLM, used in both pre-trained and fine-tuned forms, to extract speaker-discriminative features from speech signals. These embeddings are used with five classifiers: Support Vector Machine, Random Forest, Multi-Layer Perceptron, Logistic regression, and XGBoost, to classify if a speech sample is a deepfake or not. We apply multiple feature scaling strategies and assess performance using standard metrics as well as the receiver operating characteristic (ROC) curve. Our results show that fine-tuned ECAPA-TDNN embeddings consistently outperform others across classifiers. This work contributes a robust pipeline for automated spoof speech classification, serving as a critical preprocessing step for other systems like forensic voice comparison.</div></div>\",\"PeriodicalId\":8417,\"journal\":{\"name\":\"Array\",\"volume\":\"27 \",\"pages\":\"Article 100494\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Array\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590005625001213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Array","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590005625001213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了深度说话人嵌入与机器学习分类器相结合用于欺骗语音检测的有效性。我们利用四种最先进的说话人嵌入模型:x向量、强调频道关注、延迟神经网络(ECAPA-TDNN)中的传播和聚合、残差网络-延迟神经网络(ResNet-TDNN)和WavLM,以预训练和微调的形式使用,从语音信号中提取说话人判别特征。这些嵌入与五个分类器一起使用:支持向量机、随机森林、多层感知器、逻辑回归和XGBoost,以分类语音样本是否为深度伪造。我们采用多种特征缩放策略,并使用标准指标以及接收者工作特征(ROC)曲线评估性能。我们的结果表明,经过微调的ECAPA-TDNN嵌入始终优于其他分类器。这项工作为自动欺骗语音分类提供了一个强大的管道,作为其他系统(如法医语音比较)的关键预处理步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spoof speech classification using deep speaker embeddings and machine learning models
This paper examines the effectiveness of deep speaker embeddings combined with machine learning classifiers for spoof speech detection. We leverage four state-of-the-art speaker embedding models: X-vector, Emphasized channel attention, propagation and aggregation in time delay neural network (ECAPA-TDNN), Residual Network-Time Delay Neural Network (ResNet-TDNN), and WavLM, used in both pre-trained and fine-tuned forms, to extract speaker-discriminative features from speech signals. These embeddings are used with five classifiers: Support Vector Machine, Random Forest, Multi-Layer Perceptron, Logistic regression, and XGBoost, to classify if a speech sample is a deepfake or not. We apply multiple feature scaling strategies and assess performance using standard metrics as well as the receiver operating characteristic (ROC) curve. Our results show that fine-tuned ECAPA-TDNN embeddings consistently outperform others across classifiers. This work contributes a robust pipeline for automated spoof speech classification, serving as a critical preprocessing step for other systems like forensic voice comparison.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Array
Array Computer Science-General Computer Science
CiteScore
4.40
自引率
0.00%
发文量
93
审稿时长
45 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信