具有预防性维护的柔性作业车间调度新CP模型及其辅助元启发式算法

IF 4.3 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Lixin Zhao , Leilei Meng , Weiyao Cheng , Yaping Ren , Biao Zhang , Hongyan Sang
{"title":"具有预防性维护的柔性作业车间调度新CP模型及其辅助元启发式算法","authors":"Lixin Zhao ,&nbsp;Leilei Meng ,&nbsp;Weiyao Cheng ,&nbsp;Yaping Ren ,&nbsp;Biao Zhang ,&nbsp;Hongyan Sang","doi":"10.1016/j.eij.2025.100759","DOIUrl":null,"url":null,"abstract":"<div><div>The research investigates the flexible job shop scheduling problem with preventive maintenance (FJSP-PM) by considering two maintenance strategies namely fixed preventive maintenance (FJSP-FPM) and periodic preventive maintenance (FJSP-PPM). The objective is minimizing the makespan. We first propose two novel constraint programming (CP) models for FJSP-FPM and FJSP-PPM to obtain optimal solutions. Then, we design a CP-assisted meta-heuristic framework, and develop a CP-assisted Q-learning-based collaborative variable neighborhood search algorithm (CVNSQ-CP) as a representative example to effectively address large-scale instances. Finally, the experimental evaluation on benchmark instances validates the capability of the CP model and CVNSQ-CP. Specifically, compared with existing mathematical models, the proposed CP model proves 3 new optimal solutions and improves 11 current best-known solutions for FJSP-FPM, and it improves 13 current best-known solutions for FJSP-PPM. Meanwhile, CVNSQ-CP outperforms current state-of-the-art methods by improving 9 current best-known solutions for FJSP-FPM and 3 current best-known solutions for FJSP-PPM.</div></div>","PeriodicalId":56010,"journal":{"name":"Egyptian Informatics Journal","volume":"31 ","pages":"Article 100759"},"PeriodicalIF":4.3000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel CP model and CP-assisted meta-heuristic algorithm for flexible job shop scheduling with preventive maintenance\",\"authors\":\"Lixin Zhao ,&nbsp;Leilei Meng ,&nbsp;Weiyao Cheng ,&nbsp;Yaping Ren ,&nbsp;Biao Zhang ,&nbsp;Hongyan Sang\",\"doi\":\"10.1016/j.eij.2025.100759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The research investigates the flexible job shop scheduling problem with preventive maintenance (FJSP-PM) by considering two maintenance strategies namely fixed preventive maintenance (FJSP-FPM) and periodic preventive maintenance (FJSP-PPM). The objective is minimizing the makespan. We first propose two novel constraint programming (CP) models for FJSP-FPM and FJSP-PPM to obtain optimal solutions. Then, we design a CP-assisted meta-heuristic framework, and develop a CP-assisted Q-learning-based collaborative variable neighborhood search algorithm (CVNSQ-CP) as a representative example to effectively address large-scale instances. Finally, the experimental evaluation on benchmark instances validates the capability of the CP model and CVNSQ-CP. Specifically, compared with existing mathematical models, the proposed CP model proves 3 new optimal solutions and improves 11 current best-known solutions for FJSP-FPM, and it improves 13 current best-known solutions for FJSP-PPM. Meanwhile, CVNSQ-CP outperforms current state-of-the-art methods by improving 9 current best-known solutions for FJSP-FPM and 3 current best-known solutions for FJSP-PPM.</div></div>\",\"PeriodicalId\":56010,\"journal\":{\"name\":\"Egyptian Informatics Journal\",\"volume\":\"31 \",\"pages\":\"Article 100759\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Egyptian Informatics Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110866525001525\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Informatics Journal","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110866525001525","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

通过考虑固定预防性维修(FJSP-FPM)和定期预防性维修(FJSP-PPM)两种维修策略,研究了具有预防性维修(FJSP-PM)的柔性作业车间调度问题。目标是最小化完工时间。本文首先针对FJSP-FPM和FJSP-PPM问题,提出了两种新的约束规划(CP)模型来求解最优解。然后,我们设计了一个cp辅助的元启发式框架,并开发了一个基于cp辅助q学习的协同变量邻域搜索算法(CVNSQ-CP)作为代表示例,以有效地解决大规模实例。最后,在基准实例上进行了实验评估,验证了CP模型和CVNSQ-CP的能力。具体而言,与现有的数学模型相比,所提出的CP模型证明了3个新的最优解,改进了FJSP-FPM的11个已知解,改进了FJSP-PPM的13个已知解。同时,CVNSQ-CP通过改进FJSP-FPM的9个当前最知名的解决方案和FJSP-PPM的3个当前最知名的解决方案,优于当前最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel CP model and CP-assisted meta-heuristic algorithm for flexible job shop scheduling with preventive maintenance
The research investigates the flexible job shop scheduling problem with preventive maintenance (FJSP-PM) by considering two maintenance strategies namely fixed preventive maintenance (FJSP-FPM) and periodic preventive maintenance (FJSP-PPM). The objective is minimizing the makespan. We first propose two novel constraint programming (CP) models for FJSP-FPM and FJSP-PPM to obtain optimal solutions. Then, we design a CP-assisted meta-heuristic framework, and develop a CP-assisted Q-learning-based collaborative variable neighborhood search algorithm (CVNSQ-CP) as a representative example to effectively address large-scale instances. Finally, the experimental evaluation on benchmark instances validates the capability of the CP model and CVNSQ-CP. Specifically, compared with existing mathematical models, the proposed CP model proves 3 new optimal solutions and improves 11 current best-known solutions for FJSP-FPM, and it improves 13 current best-known solutions for FJSP-PPM. Meanwhile, CVNSQ-CP outperforms current state-of-the-art methods by improving 9 current best-known solutions for FJSP-FPM and 3 current best-known solutions for FJSP-PPM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Egyptian Informatics Journal
Egyptian Informatics Journal Decision Sciences-Management Science and Operations Research
CiteScore
11.10
自引率
1.90%
发文量
59
审稿时长
110 days
期刊介绍: The Egyptian Informatics Journal is published by the Faculty of Computers and Artificial Intelligence, Cairo University. This Journal provides a forum for the state-of-the-art research and development in the fields of computing, including computer sciences, information technologies, information systems, operations research and decision support. Innovative and not-previously-published work in subjects covered by the Journal is encouraged to be submitted, whether from academic, research or commercial sources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信