基于卷积神经网络的位错模式识别反应扩散模型参数的归纳确定

IF 3.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Tatchaphon Leelaprachakul , Hiroyuki Shima , Takashi Sumigawa , Yoshitaka Umeno
{"title":"基于卷积神经网络的位错模式识别反应扩散模型参数的归纳确定","authors":"Tatchaphon Leelaprachakul ,&nbsp;Hiroyuki Shima ,&nbsp;Takashi Sumigawa ,&nbsp;Yoshitaka Umeno","doi":"10.1016/j.commatsci.2025.114200","DOIUrl":null,"url":null,"abstract":"<div><div>Dislocation patterning under cyclic loading is a hallmark of microstructural evolution in crystalline materials. The Walgraef–Aifantis (WA) model captures these phenomena through a set of nonlinear reaction–diffusion equations, yet the inductive determination of its parameters from observed patterns remains a significant challenge. This study presents a data-driven framework that leverages convolutional neural networks (CNN) to predict key WA model parameters, accounting for anisotropic diffusion, directly from simulated dislocation structures. A dataset of over 13,824 patterns was generated via numerical simulations under varied WA parameters. The CNN model demonstrates high accuracy in multi-parameter regression, enabling top-down inference of loading conditions from microstructural features. This work advances the integration of machine learning with physical modeling for microstructural characterization and fatigue diagnostics.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"259 ","pages":"Article 114200"},"PeriodicalIF":3.3000,"publicationDate":"2025-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inductive determination of reaction–diffusion model parameters via dislocation pattern recognition using a convolutional neural network\",\"authors\":\"Tatchaphon Leelaprachakul ,&nbsp;Hiroyuki Shima ,&nbsp;Takashi Sumigawa ,&nbsp;Yoshitaka Umeno\",\"doi\":\"10.1016/j.commatsci.2025.114200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Dislocation patterning under cyclic loading is a hallmark of microstructural evolution in crystalline materials. The Walgraef–Aifantis (WA) model captures these phenomena through a set of nonlinear reaction–diffusion equations, yet the inductive determination of its parameters from observed patterns remains a significant challenge. This study presents a data-driven framework that leverages convolutional neural networks (CNN) to predict key WA model parameters, accounting for anisotropic diffusion, directly from simulated dislocation structures. A dataset of over 13,824 patterns was generated via numerical simulations under varied WA parameters. The CNN model demonstrates high accuracy in multi-parameter regression, enabling top-down inference of loading conditions from microstructural features. This work advances the integration of machine learning with physical modeling for microstructural characterization and fatigue diagnostics.</div></div>\",\"PeriodicalId\":10650,\"journal\":{\"name\":\"Computational Materials Science\",\"volume\":\"259 \",\"pages\":\"Article 114200\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927025625005439\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025625005439","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

循环载荷下的位错模式是晶体材料微观结构演变的标志。Walgraef-Aifantis (WA)模型通过一组非线性反应扩散方程捕捉到这些现象,但从观察到的模式中归纳确定其参数仍然是一个重大挑战。本研究提出了一个数据驱动的框架,利用卷积神经网络(CNN)直接从模拟的位错结构中预测关键的WA模型参数,考虑各向异性扩散。通过不同WA参数下的数值模拟,生成了超过13824个模式的数据集。CNN模型在多参数回归中具有较高的精度,可以从微观结构特征中自上而下地推断加载条件。这项工作推进了机器学习与微观结构表征和疲劳诊断的物理建模的集成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Inductive determination of reaction–diffusion model parameters via dislocation pattern recognition using a convolutional neural network

Inductive determination of reaction–diffusion model parameters via dislocation pattern recognition using a convolutional neural network
Dislocation patterning under cyclic loading is a hallmark of microstructural evolution in crystalline materials. The Walgraef–Aifantis (WA) model captures these phenomena through a set of nonlinear reaction–diffusion equations, yet the inductive determination of its parameters from observed patterns remains a significant challenge. This study presents a data-driven framework that leverages convolutional neural networks (CNN) to predict key WA model parameters, accounting for anisotropic diffusion, directly from simulated dislocation structures. A dataset of over 13,824 patterns was generated via numerical simulations under varied WA parameters. The CNN model demonstrates high accuracy in multi-parameter regression, enabling top-down inference of loading conditions from microstructural features. This work advances the integration of machine learning with physical modeling for microstructural characterization and fatigue diagnostics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信