六方超四面体镓:一种基于团簇的三维拓扑金属

Yuanze Song , Ting Zhang , Weizhen Meng , Jing Wang , Ying Liu
{"title":"六方超四面体镓:一种基于团簇的三维拓扑金属","authors":"Yuanze Song ,&nbsp;Ting Zhang ,&nbsp;Weizhen Meng ,&nbsp;Jing Wang ,&nbsp;Ying Liu","doi":"10.1016/j.mtquan.2025.100050","DOIUrl":null,"url":null,"abstract":"<div><div>Two novel three-dimensional allotropes, designated as hexagonal supertetrahedral aluminum and gallium (<em>h</em>-Al/<em>h</em>-Ga), are proposed based on a hexagonal diamond structure and share the same space group symmetry (<em>P</em>6<sub>3</sub>/<em>mmc</em>) as hexagonal diamond. First-principles calculations demonstrate their structural stability and superior mechanical properties. Notably, these allotropes exhibit distinct electronic characteristics: <em>h</em>-Al behaves as a narrow-bandgap semiconductor, while <em>h</em>-Ga manifests as a topological semimetal with multiple band crossings. We systematically investigate the topological characteristics of <em>h</em>-Ga, which hosts three distinct classes of topological states: triple point, nodal line, and nodal surface, with associated Fermi arcs and drumhead-like surface states. Furthermore, the inclusion of spin-orbit coupling lifts all topological degeneracies, driving a phase transition to a Dirac semimetal. Our findings not only contribute to the expansion of the supertetrahedral materials family but also underscore hexagonal supertetrahedral lattices as a robust and versatile platform for the discovery of diverse topological phases.</div></div>","PeriodicalId":100894,"journal":{"name":"Materials Today Quantum","volume":"7 ","pages":"Article 100050"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hexagonal supertetrahedral gallium: a cluster-based three-dimensional topological metal\",\"authors\":\"Yuanze Song ,&nbsp;Ting Zhang ,&nbsp;Weizhen Meng ,&nbsp;Jing Wang ,&nbsp;Ying Liu\",\"doi\":\"10.1016/j.mtquan.2025.100050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Two novel three-dimensional allotropes, designated as hexagonal supertetrahedral aluminum and gallium (<em>h</em>-Al/<em>h</em>-Ga), are proposed based on a hexagonal diamond structure and share the same space group symmetry (<em>P</em>6<sub>3</sub>/<em>mmc</em>) as hexagonal diamond. First-principles calculations demonstrate their structural stability and superior mechanical properties. Notably, these allotropes exhibit distinct electronic characteristics: <em>h</em>-Al behaves as a narrow-bandgap semiconductor, while <em>h</em>-Ga manifests as a topological semimetal with multiple band crossings. We systematically investigate the topological characteristics of <em>h</em>-Ga, which hosts three distinct classes of topological states: triple point, nodal line, and nodal surface, with associated Fermi arcs and drumhead-like surface states. Furthermore, the inclusion of spin-orbit coupling lifts all topological degeneracies, driving a phase transition to a Dirac semimetal. Our findings not only contribute to the expansion of the supertetrahedral materials family but also underscore hexagonal supertetrahedral lattices as a robust and versatile platform for the discovery of diverse topological phases.</div></div>\",\"PeriodicalId\":100894,\"journal\":{\"name\":\"Materials Today Quantum\",\"volume\":\"7 \",\"pages\":\"Article 100050\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Quantum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2950257825000289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Quantum","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950257825000289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于六边形金刚石结构,提出了具有与六边形金刚石相同空间群对称(P63/mmc)的六方超四面体铝镓(h-Al/h-Ga)两种新型的三维同素异形体。第一性原理计算证明了它们的结构稳定性和优异的力学性能。值得注意的是,这些同素异形体表现出明显的电子特性:h-Al表现为窄带隙半导体,而h-Ga表现为具有多个带交叉的拓扑半金属。我们系统地研究了h-Ga的拓扑特征,它具有三种不同类型的拓扑状态:三重点、节点线和节点表面,以及相关的费米弧和鼓状表面态。此外,自旋轨道耦合解除了所有拓扑简并,推动了向狄拉克半金属的相变。我们的发现不仅有助于超四面体材料家族的扩展,而且强调了六边形超四面体晶格作为发现各种拓扑相的强大和通用平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hexagonal supertetrahedral gallium: a cluster-based three-dimensional topological metal
Two novel three-dimensional allotropes, designated as hexagonal supertetrahedral aluminum and gallium (h-Al/h-Ga), are proposed based on a hexagonal diamond structure and share the same space group symmetry (P63/mmc) as hexagonal diamond. First-principles calculations demonstrate their structural stability and superior mechanical properties. Notably, these allotropes exhibit distinct electronic characteristics: h-Al behaves as a narrow-bandgap semiconductor, while h-Ga manifests as a topological semimetal with multiple band crossings. We systematically investigate the topological characteristics of h-Ga, which hosts three distinct classes of topological states: triple point, nodal line, and nodal surface, with associated Fermi arcs and drumhead-like surface states. Furthermore, the inclusion of spin-orbit coupling lifts all topological degeneracies, driving a phase transition to a Dirac semimetal. Our findings not only contribute to the expansion of the supertetrahedral materials family but also underscore hexagonal supertetrahedral lattices as a robust and versatile platform for the discovery of diverse topological phases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信