钙钛矿太阳能电池中双功能lewis碱-添加剂介导的界面结构和缺陷缓解

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Tanushree Majhi, M. Sridevi, Sanyam Jain and Rajiv K. Singh*, 
{"title":"钙钛矿太阳能电池中双功能lewis碱-添加剂介导的界面结构和缺陷缓解","authors":"Tanushree Majhi,&nbsp;M. Sridevi,&nbsp;Sanyam Jain and Rajiv K. Singh*,&nbsp;","doi":"10.1021/acsaem.5c01556","DOIUrl":null,"url":null,"abstract":"<p >Interfacial defects and charge recombination are key barriers to achieving high performance and long-term stability in perovskite solar cells (PSCs). To address this, we developed a dual-functional interfacial engineering strategy using fluorescein disodium salt (FLNa<sub>2</sub>), a Lewis-base-rich molecule that simultaneously passivates the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) hole-transport layer and the perovskite interface. This approach effectively neutralizes antisite defects in the perovskite, suppresses deep trap states, and minimizes nonradiative recombination. Consequently, it enhances interfacial contact, improves charge extraction, promotes perovskite crystallinity, suppresses pinhole formation, and increases the built-in potential. The incorporation of FLNa<sub>2</sub> into the device architecture leads to a notable ∼13.24% enhancement in the power conversion efficiency, underscoring the crucial role of oxygen–lead coordination in improving the HTL/perovskite interface. Furthermore, the trap density is significantly reduced in FLNa<sub>2</sub>-5-modified devices, confirming the effective passivation of the defect states. These findings highlight the importance of molecular-scale defect modulation at functional interfaces and establish FLNa<sub>2</sub> as a promising multifunctional additive for advancing the efficiency and stability of next-generation perovskite photovoltaics.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 16","pages":"12099–12109"},"PeriodicalIF":5.5000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Double-Function Lewis-Base-Additive-Mediated Interfacial Configuration and Defect Mitigation in Perovskite Solar Cells\",\"authors\":\"Tanushree Majhi,&nbsp;M. Sridevi,&nbsp;Sanyam Jain and Rajiv K. Singh*,&nbsp;\",\"doi\":\"10.1021/acsaem.5c01556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Interfacial defects and charge recombination are key barriers to achieving high performance and long-term stability in perovskite solar cells (PSCs). To address this, we developed a dual-functional interfacial engineering strategy using fluorescein disodium salt (FLNa<sub>2</sub>), a Lewis-base-rich molecule that simultaneously passivates the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) hole-transport layer and the perovskite interface. This approach effectively neutralizes antisite defects in the perovskite, suppresses deep trap states, and minimizes nonradiative recombination. Consequently, it enhances interfacial contact, improves charge extraction, promotes perovskite crystallinity, suppresses pinhole formation, and increases the built-in potential. The incorporation of FLNa<sub>2</sub> into the device architecture leads to a notable ∼13.24% enhancement in the power conversion efficiency, underscoring the crucial role of oxygen–lead coordination in improving the HTL/perovskite interface. Furthermore, the trap density is significantly reduced in FLNa<sub>2</sub>-5-modified devices, confirming the effective passivation of the defect states. These findings highlight the importance of molecular-scale defect modulation at functional interfaces and establish FLNa<sub>2</sub> as a promising multifunctional additive for advancing the efficiency and stability of next-generation perovskite photovoltaics.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\"8 16\",\"pages\":\"12099–12109\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.5c01556\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.5c01556","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

界面缺陷和电荷重组是钙钛矿太阳能电池(PSCs)实现高性能和长期稳定性的关键障碍。为了解决这个问题,我们开发了一种双功能界面工程策略,使用荧光素二钠盐(FLNa2),一种富含路易斯碱的分子,同时钝化聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸盐)(PEDOT:PSS)空穴传输层和钙钛矿界面。这种方法有效地中和了钙钛矿中的反位缺陷,抑制了深阱状态,并最大限度地减少了非辐射复合。因此,它增强了界面接触,改善了电荷提取,促进了钙钛矿结晶度,抑制了针孔的形成,并增加了内置电位。将FLNa2加入到器件结构中导致功率转换效率显著提高~ 13.24%,强调了氧-铅配位在改善html /钙钛矿界面中的关键作用。此外,在flna2 -5修饰的器件中,陷阱密度显著降低,证实了缺陷态的有效钝化。这些发现强调了功能界面上分子尺度缺陷调制的重要性,并确立了FLNa2作为一种有前途的多功能添加剂,可以提高下一代钙钛矿光伏电池的效率和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Double-Function Lewis-Base-Additive-Mediated Interfacial Configuration and Defect Mitigation in Perovskite Solar Cells

Double-Function Lewis-Base-Additive-Mediated Interfacial Configuration and Defect Mitigation in Perovskite Solar Cells

Interfacial defects and charge recombination are key barriers to achieving high performance and long-term stability in perovskite solar cells (PSCs). To address this, we developed a dual-functional interfacial engineering strategy using fluorescein disodium salt (FLNa2), a Lewis-base-rich molecule that simultaneously passivates the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) hole-transport layer and the perovskite interface. This approach effectively neutralizes antisite defects in the perovskite, suppresses deep trap states, and minimizes nonradiative recombination. Consequently, it enhances interfacial contact, improves charge extraction, promotes perovskite crystallinity, suppresses pinhole formation, and increases the built-in potential. The incorporation of FLNa2 into the device architecture leads to a notable ∼13.24% enhancement in the power conversion efficiency, underscoring the crucial role of oxygen–lead coordination in improving the HTL/perovskite interface. Furthermore, the trap density is significantly reduced in FLNa2-5-modified devices, confirming the effective passivation of the defect states. These findings highlight the importance of molecular-scale defect modulation at functional interfaces and establish FLNa2 as a promising multifunctional additive for advancing the efficiency and stability of next-generation perovskite photovoltaics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信