深度学习用于区分活跃和非活跃的多发性硬化斑块:基于mri的分类模型的比较分析

IF 2.5 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Mohammad Amin Shahram, Mostafa Robatjazi, Atefeh Rostami, Vahid Shahmaei, Ramin Shahrayini, Mohammad Salari
{"title":"深度学习用于区分活跃和非活跃的多发性硬化斑块:基于mri的分类模型的比较分析","authors":"Mohammad Amin Shahram,&nbsp;Mostafa Robatjazi,&nbsp;Atefeh Rostami,&nbsp;Vahid Shahmaei,&nbsp;Ramin Shahrayini,&nbsp;Mohammad Salari","doi":"10.1002/ima.70188","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Multiple sclerosis (MS) is a chronic inflammatory disease-causing neurological disability, particularly in young adults. Magnetic resonance imaging (MRI) is the most effective tool for detecting MS plaques, but contrast-enhanced imaging involves potential risks, including toxicity and increased imaging time. Previous methods for differentiating plaque types, such as texture analysis and manual feature extraction, face challenges such as limited datasets and poor generalizability. This study aims to develop and compare deep learning-based methods, specifically convolutional neural networks (CNNs), to classify MS lesion types using non-contrast MRI, aiming to improve clinical applicability and reduce reliance on contrast agents. This study involved 106 multiple sclerosis (MS) patients from two MRI centers. A total of 3410 lesions were analyzed, including 1408 active and 2002 inactive lesions. MRI images, including T1-weighted imaging with gadolinium contrast (T1 + Gd(, T1, Fluid-Attenuated Inversion Recovery (FLAIR), and T2 sequences, were acquired. The segmented lesions were converted into 2D slices and resampled to 128 × 128 pixels for deep learning input. Data augmentation and normalization were applied to improve model generalizability. A custom CNN model was developed and compared with four pre-trained models (ResNet50, VGG16, DenseNet121, and EfficientNetB0) using fivefold cross-validation to evaluate model performance. Performance metrics including accuracy, sensitivity, specificity, and AUC were used. The custom CNN achieved 90.15% accuracy and 94.67% AUC in FLAIR, outperforming pre-trained models. DenseNet121 showed competitive results with 88.23% accuracy and 92.86% AUC in FLAIR. Non-contrast sequences (T1, T2, and FLAIR) combined with deep learning provided promising results, reducing reliance on contrast agents. The custom CNN model excelled in classifying MS lesions across multiple MRI sequences, offering improved diagnostic accuracy and patient safety. Custom models for specialized datasets can enhance clinical outcomes, demonstrating the potential of deep learning in MS diagnosis. These findings suggest that deep learning models can be replaced with contrast agents in routine practice. Future research may explore combining CNNs with clinical features to enhance performance and interpretability.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"35 5","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning for Differentiating Active and Inactive Multiple Sclerosis Plaques: A Comparative Analysis of MRI-Based Classification Models\",\"authors\":\"Mohammad Amin Shahram,&nbsp;Mostafa Robatjazi,&nbsp;Atefeh Rostami,&nbsp;Vahid Shahmaei,&nbsp;Ramin Shahrayini,&nbsp;Mohammad Salari\",\"doi\":\"10.1002/ima.70188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Multiple sclerosis (MS) is a chronic inflammatory disease-causing neurological disability, particularly in young adults. Magnetic resonance imaging (MRI) is the most effective tool for detecting MS plaques, but contrast-enhanced imaging involves potential risks, including toxicity and increased imaging time. Previous methods for differentiating plaque types, such as texture analysis and manual feature extraction, face challenges such as limited datasets and poor generalizability. This study aims to develop and compare deep learning-based methods, specifically convolutional neural networks (CNNs), to classify MS lesion types using non-contrast MRI, aiming to improve clinical applicability and reduce reliance on contrast agents. This study involved 106 multiple sclerosis (MS) patients from two MRI centers. A total of 3410 lesions were analyzed, including 1408 active and 2002 inactive lesions. MRI images, including T1-weighted imaging with gadolinium contrast (T1 + Gd(, T1, Fluid-Attenuated Inversion Recovery (FLAIR), and T2 sequences, were acquired. The segmented lesions were converted into 2D slices and resampled to 128 × 128 pixels for deep learning input. Data augmentation and normalization were applied to improve model generalizability. A custom CNN model was developed and compared with four pre-trained models (ResNet50, VGG16, DenseNet121, and EfficientNetB0) using fivefold cross-validation to evaluate model performance. Performance metrics including accuracy, sensitivity, specificity, and AUC were used. The custom CNN achieved 90.15% accuracy and 94.67% AUC in FLAIR, outperforming pre-trained models. DenseNet121 showed competitive results with 88.23% accuracy and 92.86% AUC in FLAIR. Non-contrast sequences (T1, T2, and FLAIR) combined with deep learning provided promising results, reducing reliance on contrast agents. The custom CNN model excelled in classifying MS lesions across multiple MRI sequences, offering improved diagnostic accuracy and patient safety. Custom models for specialized datasets can enhance clinical outcomes, demonstrating the potential of deep learning in MS diagnosis. These findings suggest that deep learning models can be replaced with contrast agents in routine practice. Future research may explore combining CNNs with clinical features to enhance performance and interpretability.</p>\\n </div>\",\"PeriodicalId\":14027,\"journal\":{\"name\":\"International Journal of Imaging Systems and Technology\",\"volume\":\"35 5\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Imaging Systems and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ima.70188\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.70188","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

多发性硬化症(MS)是一种慢性炎症性疾病,引起神经功能障碍,特别是在年轻人中。磁共振成像(MRI)是检测MS斑块最有效的工具,但对比增强成像存在潜在风险,包括毒性和增加成像时间。以前用于区分斑块类型的方法,如纹理分析和人工特征提取,面临着数据集有限和泛化能力差等挑战。本研究旨在开发和比较基于深度学习的方法,特别是卷积神经网络(cnn),利用非对比MRI对MS病变类型进行分类,旨在提高临床适用性,减少对对比剂的依赖。这项研究涉及来自两个MRI中心的106名多发性硬化症(MS)患者。共分析了3410个病变,其中1408个为活动性病变,2002个为非活动性病变。MRI图像包括钆造影剂T1加权成像(T1 + Gd), T1,流体衰减反转恢复(FLAIR)和T2序列。将分割后的病灶转换成二维切片,重新采样到128 × 128像素,作为深度学习输入。采用数据增强和归一化方法提高模型的泛化能力。开发了自定义CNN模型,并将其与四个预训练模型(ResNet50、VGG16、DenseNet121和EfficientNetB0)进行了五倍交叉验证,以评估模型的性能。使用的性能指标包括准确性、灵敏度、特异性和AUC。自定义CNN在FLAIR上的准确率为90.15%,AUC为94.67%,优于预训练模型。DenseNet121在FLAIR上的准确度为88.23%,AUC为92.86%。非对比序列(T1、T2和FLAIR)结合深度学习提供了令人满意的结果,减少了对对比剂的依赖。自定义CNN模型擅长在多个MRI序列中对MS病变进行分类,提高了诊断准确性和患者安全性。专门数据集的定制模型可以提高临床结果,展示了深度学习在MS诊断中的潜力。这些发现表明,在日常实践中,深度学习模型可以被造影剂取代。未来的研究可能会探索将cnn与临床特征结合起来,以提高性能和可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning for Differentiating Active and Inactive Multiple Sclerosis Plaques: A Comparative Analysis of MRI-Based Classification Models

Multiple sclerosis (MS) is a chronic inflammatory disease-causing neurological disability, particularly in young adults. Magnetic resonance imaging (MRI) is the most effective tool for detecting MS plaques, but contrast-enhanced imaging involves potential risks, including toxicity and increased imaging time. Previous methods for differentiating plaque types, such as texture analysis and manual feature extraction, face challenges such as limited datasets and poor generalizability. This study aims to develop and compare deep learning-based methods, specifically convolutional neural networks (CNNs), to classify MS lesion types using non-contrast MRI, aiming to improve clinical applicability and reduce reliance on contrast agents. This study involved 106 multiple sclerosis (MS) patients from two MRI centers. A total of 3410 lesions were analyzed, including 1408 active and 2002 inactive lesions. MRI images, including T1-weighted imaging with gadolinium contrast (T1 + Gd(, T1, Fluid-Attenuated Inversion Recovery (FLAIR), and T2 sequences, were acquired. The segmented lesions were converted into 2D slices and resampled to 128 × 128 pixels for deep learning input. Data augmentation and normalization were applied to improve model generalizability. A custom CNN model was developed and compared with four pre-trained models (ResNet50, VGG16, DenseNet121, and EfficientNetB0) using fivefold cross-validation to evaluate model performance. Performance metrics including accuracy, sensitivity, specificity, and AUC were used. The custom CNN achieved 90.15% accuracy and 94.67% AUC in FLAIR, outperforming pre-trained models. DenseNet121 showed competitive results with 88.23% accuracy and 92.86% AUC in FLAIR. Non-contrast sequences (T1, T2, and FLAIR) combined with deep learning provided promising results, reducing reliance on contrast agents. The custom CNN model excelled in classifying MS lesions across multiple MRI sequences, offering improved diagnostic accuracy and patient safety. Custom models for specialized datasets can enhance clinical outcomes, demonstrating the potential of deep learning in MS diagnosis. These findings suggest that deep learning models can be replaced with contrast agents in routine practice. Future research may explore combining CNNs with clinical features to enhance performance and interpretability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Imaging Systems and Technology
International Journal of Imaging Systems and Technology 工程技术-成像科学与照相技术
CiteScore
6.90
自引率
6.10%
发文量
138
审稿时长
3 months
期刊介绍: The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals. IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging. The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered. The scope of the journal includes, but is not limited to, the following in the context of biomedical research: Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.; Neuromodulation and brain stimulation techniques such as TMS and tDCS; Software and hardware for imaging, especially related to human and animal health; Image segmentation in normal and clinical populations; Pattern analysis and classification using machine learning techniques; Computational modeling and analysis; Brain connectivity and connectomics; Systems-level characterization of brain function; Neural networks and neurorobotics; Computer vision, based on human/animal physiology; Brain-computer interface (BCI) technology; Big data, databasing and data mining.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信