基于Hoeffding自适应树的工业环境同步故障预测

IF 3.5 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
A. Esteban, A. Cano, S. Ventura, A. Zafra
{"title":"基于Hoeffding自适应树的工业环境同步故障预测","authors":"A. Esteban,&nbsp;A. Cano,&nbsp;S. Ventura,&nbsp;A. Zafra","doi":"10.1007/s10489-025-06786-7","DOIUrl":null,"url":null,"abstract":"<div><p>Predictive Maintenance (PdM) emerges as a critical task of Industry 4.0, driving operational efficiency, minimizing downtime, and reducing maintenance costs. However, real-world industrial environments present unsolved challenges, especially in predicting simultaneous and correlated faults under evolving conditions. Traditional batch-based and deep learning approaches for simultaneous fault prediction often fall short due to their assumptions of static data distributions and high computational demands, making them unsuitable for dynamic, resource-constrained systems. In response, we propose OEMLHAT (Online Ensemble of Multi-Label Hoeffding Adaptive Trees), a novel model tailored for real-time, multi-label fault prediction in non-stationary industrial settings. OEMLHAT introduces a scalable online ensemble architecture that integrates online bagging, dynamic feature subspacing, and adaptive output weighting. This design allows it to efficiently handle concept drift, high-dimensional input spaces, and label sparsity, key bottlenecks in existing PdM solutions. Experimental results on three public multi-label PdM case studies demonstrate substantial improvements in predictive performance of OEMLHAT over previous batch-based and online proposals for multi-label classification, particularly with an average improvement in micro-averaged F1-score of 18.49% over the second most-accurate batch-based proposal and of 8.56% in the case of the second best online model. By addressing a critical gap in online multi-label learning for PdM, this work provides a robust and interpretable solution for next-generation industrial monitoring systems for fault detection, particularly for rare and concurrent failures.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 13","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10489-025-06786-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Simultaneous fault prediction in evolving industrial environments with ensembles of Hoeffding adaptive trees\",\"authors\":\"A. Esteban,&nbsp;A. Cano,&nbsp;S. Ventura,&nbsp;A. Zafra\",\"doi\":\"10.1007/s10489-025-06786-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Predictive Maintenance (PdM) emerges as a critical task of Industry 4.0, driving operational efficiency, minimizing downtime, and reducing maintenance costs. However, real-world industrial environments present unsolved challenges, especially in predicting simultaneous and correlated faults under evolving conditions. Traditional batch-based and deep learning approaches for simultaneous fault prediction often fall short due to their assumptions of static data distributions and high computational demands, making them unsuitable for dynamic, resource-constrained systems. In response, we propose OEMLHAT (Online Ensemble of Multi-Label Hoeffding Adaptive Trees), a novel model tailored for real-time, multi-label fault prediction in non-stationary industrial settings. OEMLHAT introduces a scalable online ensemble architecture that integrates online bagging, dynamic feature subspacing, and adaptive output weighting. This design allows it to efficiently handle concept drift, high-dimensional input spaces, and label sparsity, key bottlenecks in existing PdM solutions. Experimental results on three public multi-label PdM case studies demonstrate substantial improvements in predictive performance of OEMLHAT over previous batch-based and online proposals for multi-label classification, particularly with an average improvement in micro-averaged F1-score of 18.49% over the second most-accurate batch-based proposal and of 8.56% in the case of the second best online model. By addressing a critical gap in online multi-label learning for PdM, this work provides a robust and interpretable solution for next-generation industrial monitoring systems for fault detection, particularly for rare and concurrent failures.</p></div>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"55 13\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10489-025-06786-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-025-06786-7\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-025-06786-7","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

预测性维护(PdM)已成为工业4.0的一项关键任务,可提高运营效率,最大限度地减少停机时间,并降低维护成本。然而,现实世界的工业环境面临着尚未解决的挑战,特别是在不断变化的条件下预测同步和相关故障。传统的基于批处理和深度学习的同时故障预测方法由于其静态数据分布和高计算需求的假设,往往不足,使其不适合动态的,资源受限的系统。作为回应,我们提出了OEMLHAT(多标签Hoeffding自适应树的在线集成),这是一种针对非平稳工业环境中实时、多标签故障预测的新模型。OEMLHAT引入了一种可扩展的在线集成体系结构,该体系结构集成了在线打包、动态特征子间距和自适应输出权重。这种设计使其能够有效地处理概念漂移、高维输入空间和标签稀疏性,这是现有PdM解决方案中的关键瓶颈。三个公共多标签PdM案例研究的实验结果表明,OEMLHAT在多标签分类方面的预测性能比以前基于批处理和在线的建议有了很大的提高,特别是微平均f1得分比第二精确的基于批处理的建议提高了18.49%,在第二好的在线模型中提高了8.56%。通过解决PdM在线多标签学习的一个关键问题,这项工作为下一代工业监测系统提供了一个强大的、可解释的解决方案,用于故障检测,特别是对于罕见的和并发的故障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simultaneous fault prediction in evolving industrial environments with ensembles of Hoeffding adaptive trees

Predictive Maintenance (PdM) emerges as a critical task of Industry 4.0, driving operational efficiency, minimizing downtime, and reducing maintenance costs. However, real-world industrial environments present unsolved challenges, especially in predicting simultaneous and correlated faults under evolving conditions. Traditional batch-based and deep learning approaches for simultaneous fault prediction often fall short due to their assumptions of static data distributions and high computational demands, making them unsuitable for dynamic, resource-constrained systems. In response, we propose OEMLHAT (Online Ensemble of Multi-Label Hoeffding Adaptive Trees), a novel model tailored for real-time, multi-label fault prediction in non-stationary industrial settings. OEMLHAT introduces a scalable online ensemble architecture that integrates online bagging, dynamic feature subspacing, and adaptive output weighting. This design allows it to efficiently handle concept drift, high-dimensional input spaces, and label sparsity, key bottlenecks in existing PdM solutions. Experimental results on three public multi-label PdM case studies demonstrate substantial improvements in predictive performance of OEMLHAT over previous batch-based and online proposals for multi-label classification, particularly with an average improvement in micro-averaged F1-score of 18.49% over the second most-accurate batch-based proposal and of 8.56% in the case of the second best online model. By addressing a critical gap in online multi-label learning for PdM, this work provides a robust and interpretable solution for next-generation industrial monitoring systems for fault detection, particularly for rare and concurrent failures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Intelligence
Applied Intelligence 工程技术-计算机:人工智能
CiteScore
6.60
自引率
20.80%
发文量
1361
审稿时长
5.9 months
期刊介绍: With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance. The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信