{"title":"基于Hoeffding自适应树的工业环境同步故障预测","authors":"A. Esteban, A. Cano, S. Ventura, A. Zafra","doi":"10.1007/s10489-025-06786-7","DOIUrl":null,"url":null,"abstract":"<div><p>Predictive Maintenance (PdM) emerges as a critical task of Industry 4.0, driving operational efficiency, minimizing downtime, and reducing maintenance costs. However, real-world industrial environments present unsolved challenges, especially in predicting simultaneous and correlated faults under evolving conditions. Traditional batch-based and deep learning approaches for simultaneous fault prediction often fall short due to their assumptions of static data distributions and high computational demands, making them unsuitable for dynamic, resource-constrained systems. In response, we propose OEMLHAT (Online Ensemble of Multi-Label Hoeffding Adaptive Trees), a novel model tailored for real-time, multi-label fault prediction in non-stationary industrial settings. OEMLHAT introduces a scalable online ensemble architecture that integrates online bagging, dynamic feature subspacing, and adaptive output weighting. This design allows it to efficiently handle concept drift, high-dimensional input spaces, and label sparsity, key bottlenecks in existing PdM solutions. Experimental results on three public multi-label PdM case studies demonstrate substantial improvements in predictive performance of OEMLHAT over previous batch-based and online proposals for multi-label classification, particularly with an average improvement in micro-averaged F1-score of 18.49% over the second most-accurate batch-based proposal and of 8.56% in the case of the second best online model. By addressing a critical gap in online multi-label learning for PdM, this work provides a robust and interpretable solution for next-generation industrial monitoring systems for fault detection, particularly for rare and concurrent failures.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 13","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10489-025-06786-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Simultaneous fault prediction in evolving industrial environments with ensembles of Hoeffding adaptive trees\",\"authors\":\"A. Esteban, A. Cano, S. Ventura, A. Zafra\",\"doi\":\"10.1007/s10489-025-06786-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Predictive Maintenance (PdM) emerges as a critical task of Industry 4.0, driving operational efficiency, minimizing downtime, and reducing maintenance costs. However, real-world industrial environments present unsolved challenges, especially in predicting simultaneous and correlated faults under evolving conditions. Traditional batch-based and deep learning approaches for simultaneous fault prediction often fall short due to their assumptions of static data distributions and high computational demands, making them unsuitable for dynamic, resource-constrained systems. In response, we propose OEMLHAT (Online Ensemble of Multi-Label Hoeffding Adaptive Trees), a novel model tailored for real-time, multi-label fault prediction in non-stationary industrial settings. OEMLHAT introduces a scalable online ensemble architecture that integrates online bagging, dynamic feature subspacing, and adaptive output weighting. This design allows it to efficiently handle concept drift, high-dimensional input spaces, and label sparsity, key bottlenecks in existing PdM solutions. Experimental results on three public multi-label PdM case studies demonstrate substantial improvements in predictive performance of OEMLHAT over previous batch-based and online proposals for multi-label classification, particularly with an average improvement in micro-averaged F1-score of 18.49% over the second most-accurate batch-based proposal and of 8.56% in the case of the second best online model. By addressing a critical gap in online multi-label learning for PdM, this work provides a robust and interpretable solution for next-generation industrial monitoring systems for fault detection, particularly for rare and concurrent failures.</p></div>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"55 13\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10489-025-06786-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-025-06786-7\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-025-06786-7","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Simultaneous fault prediction in evolving industrial environments with ensembles of Hoeffding adaptive trees
Predictive Maintenance (PdM) emerges as a critical task of Industry 4.0, driving operational efficiency, minimizing downtime, and reducing maintenance costs. However, real-world industrial environments present unsolved challenges, especially in predicting simultaneous and correlated faults under evolving conditions. Traditional batch-based and deep learning approaches for simultaneous fault prediction often fall short due to their assumptions of static data distributions and high computational demands, making them unsuitable for dynamic, resource-constrained systems. In response, we propose OEMLHAT (Online Ensemble of Multi-Label Hoeffding Adaptive Trees), a novel model tailored for real-time, multi-label fault prediction in non-stationary industrial settings. OEMLHAT introduces a scalable online ensemble architecture that integrates online bagging, dynamic feature subspacing, and adaptive output weighting. This design allows it to efficiently handle concept drift, high-dimensional input spaces, and label sparsity, key bottlenecks in existing PdM solutions. Experimental results on three public multi-label PdM case studies demonstrate substantial improvements in predictive performance of OEMLHAT over previous batch-based and online proposals for multi-label classification, particularly with an average improvement in micro-averaged F1-score of 18.49% over the second most-accurate batch-based proposal and of 8.56% in the case of the second best online model. By addressing a critical gap in online multi-label learning for PdM, this work provides a robust and interpretable solution for next-generation industrial monitoring systems for fault detection, particularly for rare and concurrent failures.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.