Olha Nakonechna , Benoit Denand , Imed-Eddine Benrabah , Guillaume Geandier , Lionel Germain , Hugo Paul Van Landeghem , Alexis Deschamps , Sébastien Allain
{"title":"组合优化方法在双相中锰钢中的应用","authors":"Olha Nakonechna , Benoit Denand , Imed-Eddine Benrabah , Guillaume Geandier , Lionel Germain , Hugo Paul Van Landeghem , Alexis Deschamps , Sébastien Allain","doi":"10.1016/j.scriptamat.2025.116955","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces a novel combinatorial approach for optimizing the microstructure of duplex medium-manganese (Mn) steels by coupling a controlled thermal gradient with in situ high-energy X-ray diffraction (HEXRD) during intercritical annealing. A temperature gradient (680–720 °C) across a single sample enables real-time monitoring of phase transformations over a broad thermal range in one experiment. Compared to isothermal trials, this method offers high-resolution insight into austenite formation kinetics and phase stability, enabling accurate identification of the optimal temperature window for maximizing retained austenite. The results reveal a narrow optimal range (∼700–710 °C) where retained austenite fractions exceed 30 %, surpassing values from traditional methods. Post-mortem Electron Backscatter Diffraction (EBSD) analysis showed the spatial distribution of stabilized austenite, highlighting the complementary roles of in situ and ex situ characterization. This work demonstrates the potential of gradient-based combinatorial metallurgy to accelerate process optimization and support the design of high-performance third-generation advanced high-strength steels.</div></div>","PeriodicalId":423,"journal":{"name":"Scripta Materialia","volume":"270 ","pages":"Article 116955"},"PeriodicalIF":5.6000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructure optimization by combinatorial approach applied to Duplex Medium Manganese steels\",\"authors\":\"Olha Nakonechna , Benoit Denand , Imed-Eddine Benrabah , Guillaume Geandier , Lionel Germain , Hugo Paul Van Landeghem , Alexis Deschamps , Sébastien Allain\",\"doi\":\"10.1016/j.scriptamat.2025.116955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study introduces a novel combinatorial approach for optimizing the microstructure of duplex medium-manganese (Mn) steels by coupling a controlled thermal gradient with in situ high-energy X-ray diffraction (HEXRD) during intercritical annealing. A temperature gradient (680–720 °C) across a single sample enables real-time monitoring of phase transformations over a broad thermal range in one experiment. Compared to isothermal trials, this method offers high-resolution insight into austenite formation kinetics and phase stability, enabling accurate identification of the optimal temperature window for maximizing retained austenite. The results reveal a narrow optimal range (∼700–710 °C) where retained austenite fractions exceed 30 %, surpassing values from traditional methods. Post-mortem Electron Backscatter Diffraction (EBSD) analysis showed the spatial distribution of stabilized austenite, highlighting the complementary roles of in situ and ex situ characterization. This work demonstrates the potential of gradient-based combinatorial metallurgy to accelerate process optimization and support the design of high-performance third-generation advanced high-strength steels.</div></div>\",\"PeriodicalId\":423,\"journal\":{\"name\":\"Scripta Materialia\",\"volume\":\"270 \",\"pages\":\"Article 116955\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scripta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359646225004178\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scripta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359646225004178","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Microstructure optimization by combinatorial approach applied to Duplex Medium Manganese steels
This study introduces a novel combinatorial approach for optimizing the microstructure of duplex medium-manganese (Mn) steels by coupling a controlled thermal gradient with in situ high-energy X-ray diffraction (HEXRD) during intercritical annealing. A temperature gradient (680–720 °C) across a single sample enables real-time monitoring of phase transformations over a broad thermal range in one experiment. Compared to isothermal trials, this method offers high-resolution insight into austenite formation kinetics and phase stability, enabling accurate identification of the optimal temperature window for maximizing retained austenite. The results reveal a narrow optimal range (∼700–710 °C) where retained austenite fractions exceed 30 %, surpassing values from traditional methods. Post-mortem Electron Backscatter Diffraction (EBSD) analysis showed the spatial distribution of stabilized austenite, highlighting the complementary roles of in situ and ex situ characterization. This work demonstrates the potential of gradient-based combinatorial metallurgy to accelerate process optimization and support the design of high-performance third-generation advanced high-strength steels.
期刊介绍:
Scripta Materialia is a LETTERS journal of Acta Materialia, providing a forum for the rapid publication of short communications on the relationship between the structure and the properties of inorganic materials. The emphasis is on originality rather than incremental research. Short reports on the development of materials with novel or substantially improved properties are also welcomed. Emphasis is on either the functional or mechanical behavior of metals, ceramics and semiconductors at all length scales.