基于深度强化学习的多无人机辅助MEC应急通信系统智能资源管理

IF 1.6 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Yuanmo Lin, Zhiyong Xu, Jianhua Li, Jingyuan Wang, Cheng Li
{"title":"基于深度强化学习的多无人机辅助MEC应急通信系统智能资源管理","authors":"Yuanmo Lin,&nbsp;Zhiyong Xu,&nbsp;Jianhua Li,&nbsp;Jingyuan Wang,&nbsp;Cheng Li","doi":"10.1049/cmu2.70063","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates a multi unmanned aerial vehicles (UAVs) assisted mobile edge computing (MEC) emergency communication system in which each UAV acts as a mobile MEC server for computing tasks offloaded by ground sensor users. Considering the stochastic dynamic characteristics of multi-UAVs-assisted MEC systems and the precision of spectrum resources, the deep reinforcement learning (DRL) algorithm and the non-orthogonal multiple access (NOMA) techniques are introduced. Specifically, we design an offloading algorithm based on a multi-agent deep deterministic policy gradient that jointly optimizes the UAVs' flight trajectories, the sensors' offloading powers, and the dynamic spectrum access to maximize the number of successfully offloaded tasks. The algorithm employs the Gumbel-Softmax method to effectively control both the discrete sensor access action and the continuous offloading power action. Sufficient simulation results show that the proposed algorithm performs significantly better than other benchmark algorithms.</p>","PeriodicalId":55001,"journal":{"name":"IET Communications","volume":"19 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cmu2.70063","citationCount":"0","resultStr":"{\"title\":\"Deep Reinforcement Learning-Based Intelligent Resource Management in Multi-UAVs-Assisted MEC Emergency Communication System\",\"authors\":\"Yuanmo Lin,&nbsp;Zhiyong Xu,&nbsp;Jianhua Li,&nbsp;Jingyuan Wang,&nbsp;Cheng Li\",\"doi\":\"10.1049/cmu2.70063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper investigates a multi unmanned aerial vehicles (UAVs) assisted mobile edge computing (MEC) emergency communication system in which each UAV acts as a mobile MEC server for computing tasks offloaded by ground sensor users. Considering the stochastic dynamic characteristics of multi-UAVs-assisted MEC systems and the precision of spectrum resources, the deep reinforcement learning (DRL) algorithm and the non-orthogonal multiple access (NOMA) techniques are introduced. Specifically, we design an offloading algorithm based on a multi-agent deep deterministic policy gradient that jointly optimizes the UAVs' flight trajectories, the sensors' offloading powers, and the dynamic spectrum access to maximize the number of successfully offloaded tasks. The algorithm employs the Gumbel-Softmax method to effectively control both the discrete sensor access action and the continuous offloading power action. Sufficient simulation results show that the proposed algorithm performs significantly better than other benchmark algorithms.</p>\",\"PeriodicalId\":55001,\"journal\":{\"name\":\"IET Communications\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cmu2.70063\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/cmu2.70063\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Communications","FirstCategoryId":"94","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/cmu2.70063","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

研究了一种多无人机辅助移动边缘计算(MEC)应急通信系统,其中每架无人机作为移动MEC服务器,处理由地面传感器用户卸载的计算任务。考虑到多无人机辅助MEC系统的随机动态特性和频谱资源的精度,介绍了深度强化学习(DRL)算法和非正交多址(NOMA)技术。具体来说,我们设计了一种基于多智能体深度确定性策略梯度的卸载算法,通过联合优化无人机的飞行轨迹、传感器的卸载功率和动态频谱访问,使成功卸载的任务数量最大化。该算法采用Gumbel-Softmax方法,有效地控制了离散的传感器接入动作和连续的卸载功率动作。充分的仿真结果表明,该算法的性能明显优于其他基准算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Deep Reinforcement Learning-Based Intelligent Resource Management in Multi-UAVs-Assisted MEC Emergency Communication System

Deep Reinforcement Learning-Based Intelligent Resource Management in Multi-UAVs-Assisted MEC Emergency Communication System

Deep Reinforcement Learning-Based Intelligent Resource Management in Multi-UAVs-Assisted MEC Emergency Communication System

Deep Reinforcement Learning-Based Intelligent Resource Management in Multi-UAVs-Assisted MEC Emergency Communication System

Deep Reinforcement Learning-Based Intelligent Resource Management in Multi-UAVs-Assisted MEC Emergency Communication System

This paper investigates a multi unmanned aerial vehicles (UAVs) assisted mobile edge computing (MEC) emergency communication system in which each UAV acts as a mobile MEC server for computing tasks offloaded by ground sensor users. Considering the stochastic dynamic characteristics of multi-UAVs-assisted MEC systems and the precision of spectrum resources, the deep reinforcement learning (DRL) algorithm and the non-orthogonal multiple access (NOMA) techniques are introduced. Specifically, we design an offloading algorithm based on a multi-agent deep deterministic policy gradient that jointly optimizes the UAVs' flight trajectories, the sensors' offloading powers, and the dynamic spectrum access to maximize the number of successfully offloaded tasks. The algorithm employs the Gumbel-Softmax method to effectively control both the discrete sensor access action and the continuous offloading power action. Sufficient simulation results show that the proposed algorithm performs significantly better than other benchmark algorithms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Communications
IET Communications 工程技术-工程:电子与电气
CiteScore
4.30
自引率
6.20%
发文量
220
审稿时长
5.9 months
期刊介绍: IET Communications covers the fundamental and generic research for a better understanding of communication technologies to harness the signals for better performing communication systems using various wired and/or wireless media. This Journal is particularly interested in research papers reporting novel solutions to the dominating problems of noise, interference, timing and errors for reduction systems deficiencies such as wasting scarce resources such as spectra, energy and bandwidth. Topics include, but are not limited to: Coding and Communication Theory; Modulation and Signal Design; Wired, Wireless and Optical Communication; Communication System Special Issues. Current Call for Papers: Cognitive and AI-enabled Wireless and Mobile - https://digital-library.theiet.org/files/IET_COM_CFP_CAWM.pdf UAV-Enabled Mobile Edge Computing - https://digital-library.theiet.org/files/IET_COM_CFP_UAV.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信