量子极小曲面的离散painlev方程的特解

IF 1.1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
P. A. Clarkson, A. Dzhamay, A. N. W. Hone, B. Mitchell
{"title":"量子极小曲面的离散painlev<e:1>方程的特解","authors":"P. A. Clarkson,&nbsp;A. Dzhamay,&nbsp;A. N. W. Hone,&nbsp;B. Mitchell","doi":"10.1134/S0040577925080045","DOIUrl":null,"url":null,"abstract":"<p> We consider solutions of a discrete Painlevé equation arising from a construction of quantum minimal surfaces by Arnlind, Hoppe, and Kontsevich, and in earlier work of Cornalba and Taylor on static membranes. While the discrete equation admits a continuum limit to the Painlevé I differential equation, we find that it has the same space of initial values as the Painlevé V equation with certain specific parameter values. We further explicitly show how each iteration of this discrete Painlevé I equation corresponds to a certain composition of Bäcklund transformations for Painlevé V, as was first remarked in a work by Tokihiro, Grammaticos, and Ramani. In addition, we show that some explicit special function solutions of Painlevé V, written in terms of modified Bessel functions, yield the unique positive solution of the initial value problem required for quantum minimal surfaces. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":"224 2","pages":"1359 - 1397"},"PeriodicalIF":1.1000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Special solutions of a discrete Painlevé equation for quantum minimal surfaces\",\"authors\":\"P. A. Clarkson,&nbsp;A. Dzhamay,&nbsp;A. N. W. Hone,&nbsp;B. Mitchell\",\"doi\":\"10.1134/S0040577925080045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We consider solutions of a discrete Painlevé equation arising from a construction of quantum minimal surfaces by Arnlind, Hoppe, and Kontsevich, and in earlier work of Cornalba and Taylor on static membranes. While the discrete equation admits a continuum limit to the Painlevé I differential equation, we find that it has the same space of initial values as the Painlevé V equation with certain specific parameter values. We further explicitly show how each iteration of this discrete Painlevé I equation corresponds to a certain composition of Bäcklund transformations for Painlevé V, as was first remarked in a work by Tokihiro, Grammaticos, and Ramani. In addition, we show that some explicit special function solutions of Painlevé V, written in terms of modified Bessel functions, yield the unique positive solution of the initial value problem required for quantum minimal surfaces. </p>\",\"PeriodicalId\":797,\"journal\":{\"name\":\"Theoretical and Mathematical Physics\",\"volume\":\"224 2\",\"pages\":\"1359 - 1397\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0040577925080045\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577925080045","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑由Arnlind, Hoppe和Kontsevich的量子最小曲面构造引起的离散painlev方程的解,以及Cornalba和Taylor在静态膜上的早期工作。而离散方程对painlevevl微分方程有连续极限,我们发现它与painlevevl微分方程具有相同的初始值空间,且具有特定的参数值。我们进一步明确地展示了这个离散painlev I方程的每次迭代如何对应于painlev V的Bäcklund变换的特定组合,正如Tokihiro, Grammaticos和Ramani在一篇文章中首先提到的那样。此外,我们证明了用修正贝塞尔函数表示的painlevev的一些显式特殊函数解,产生了量子极小曲面所需的初值问题的唯一正解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Special solutions of a discrete Painlevé equation for quantum minimal surfaces

We consider solutions of a discrete Painlevé equation arising from a construction of quantum minimal surfaces by Arnlind, Hoppe, and Kontsevich, and in earlier work of Cornalba and Taylor on static membranes. While the discrete equation admits a continuum limit to the Painlevé I differential equation, we find that it has the same space of initial values as the Painlevé V equation with certain specific parameter values. We further explicitly show how each iteration of this discrete Painlevé I equation corresponds to a certain composition of Bäcklund transformations for Painlevé V, as was first remarked in a work by Tokihiro, Grammaticos, and Ramani. In addition, we show that some explicit special function solutions of Painlevé V, written in terms of modified Bessel functions, yield the unique positive solution of the initial value problem required for quantum minimal surfaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical and Mathematical Physics
Theoretical and Mathematical Physics 物理-物理:数学物理
CiteScore
1.60
自引率
20.00%
发文量
103
审稿时长
4-8 weeks
期刊介绍: Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems. Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信