不可交换\(n\) -磁场中的环面:体积,标量曲率和量子随机方程

IF 1.1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
M. N. Hounkonnou, F. Melong
{"title":"不可交换\\(n\\) -磁场中的环面:体积,标量曲率和量子随机方程","authors":"M. N. Hounkonnou,&nbsp;F. Melong","doi":"10.1134/S0040577925080033","DOIUrl":null,"url":null,"abstract":"<p> Motivated by the works published in 2003 by Chakraborty <i>et al.</i> [<i>J. Operator Theory</i>, <b>49</b> (2003), 185–201], and by Sakamoto and Tanimura [<i>J. Math. Phys.</i>, <b>44</b> (2003), 5042–5069], we investigate the noncommutative <span>\\(n\\)</span>-torus in a magnetic field. We study the invariance of volume, integrated scalar curvature, and volume form using the method of perturbation by the inner derivation of the magnetic Laplacian in this geometric framework. Moreover, we derive the magnetic stochastic process describing the motion of a particle in a uniform magnetic field in this torus and deduce the properties of solutions of the corresponding magnetic quantum stochastic differential equation. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":"224 2","pages":"1340 - 1358"},"PeriodicalIF":1.1000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Noncommutative \\\\(n\\\\)-torus in the magnetic field: volume, scalar curvature, and quantum stochastic equation\",\"authors\":\"M. N. Hounkonnou,&nbsp;F. Melong\",\"doi\":\"10.1134/S0040577925080033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> Motivated by the works published in 2003 by Chakraborty <i>et al.</i> [<i>J. Operator Theory</i>, <b>49</b> (2003), 185–201], and by Sakamoto and Tanimura [<i>J. Math. Phys.</i>, <b>44</b> (2003), 5042–5069], we investigate the noncommutative <span>\\\\(n\\\\)</span>-torus in a magnetic field. We study the invariance of volume, integrated scalar curvature, and volume form using the method of perturbation by the inner derivation of the magnetic Laplacian in this geometric framework. Moreover, we derive the magnetic stochastic process describing the motion of a particle in a uniform magnetic field in this torus and deduce the properties of solutions of the corresponding magnetic quantum stochastic differential equation. </p>\",\"PeriodicalId\":797,\"journal\":{\"name\":\"Theoretical and Mathematical Physics\",\"volume\":\"224 2\",\"pages\":\"1340 - 1358\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0040577925080033\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577925080033","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

受Chakraborty等人2003年发表的著作的启发[J]。算子理论,49 (2003),185-201 [J]。数学。物理。, 44(2003), 5042-5069],我们研究了磁场中的非交换\(n\) -环面。在此几何框架中,利用磁拉普拉斯内导的微扰方法研究了体积、积分标量曲率和体积形式的不变性。此外,我们推导了描述粒子在此环面内均匀磁场中运动的磁随机过程,并推导了相应的磁量子随机微分方程解的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Noncommutative \(n\)-torus in the magnetic field: volume, scalar curvature, and quantum stochastic equation

Motivated by the works published in 2003 by Chakraborty et al. [J. Operator Theory, 49 (2003), 185–201], and by Sakamoto and Tanimura [J. Math. Phys., 44 (2003), 5042–5069], we investigate the noncommutative \(n\)-torus in a magnetic field. We study the invariance of volume, integrated scalar curvature, and volume form using the method of perturbation by the inner derivation of the magnetic Laplacian in this geometric framework. Moreover, we derive the magnetic stochastic process describing the motion of a particle in a uniform magnetic field in this torus and deduce the properties of solutions of the corresponding magnetic quantum stochastic differential equation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical and Mathematical Physics
Theoretical and Mathematical Physics 物理-物理:数学物理
CiteScore
1.60
自引率
20.00%
发文量
103
审稿时长
4-8 weeks
期刊介绍: Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems. Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信